Math 140 Logistic Growth Models Section 6.3

We have discussed the limitations of the exponential growth model \(\frac{dy}{dx} = ky \), which has solution \(y = Ce^{kt} \). This models populations which exhibit unlimited growth. Even in the case of bacteria, eventually the population would run out of space, or food, or kill the host.

In a logistic growth model, we consider the growth of a population which grows rapidly (exponentially) at first, but has an upper limit on the population size imposed by environmental factors. This upper limit is called \(L \), sometimes known as the carrying capacity. The carrying capacity is the maximum population size that can be sustained as times goes on.

The logistic growth model is: \(\frac{dy}{dt} = ky(L - y) \quad 0 < y < L \quad \text{for } t \geq 0 \)

Here \(L \) is the carrying capacity and \(y \) is the population at time \(t \). This equation says the population \(y \) is increasing at a rate that is jointly proportional to its size \(y \) and the difference between \(L \) and its size \(y \).

To solve this equation, first separate the variables.

\[
\frac{1}{y(L - y)} \, dy = k \, dt
\]

Integrate both sides:

\[
\int \frac{1}{y(L - y)} \, dy = \int k \, dt
\]

Write the left side as a sum of partial fractions.
Integrate both sides.

Solve for y.

Let’s sketch a graph of this curve. Let $y = f(t)$. Now, find $y = f(0)$.