3.1 Extrema on an Interval

- Def Extrema

Let \(f \) be defined on an interval \(I \) containing \(c \).

\[
\begin{align*}
\mathbb{R} & \rightarrow [a,b] \quad \mathbb{R} & \rightarrow (a,b) \\
\mathbb{R} & \rightarrow (a,b) \quad \mathbb{R} & \rightarrow [a,b]
\end{align*}
\]

1. \(f(c) \) is the minimum of \(f \) on \(I \) when \(f(x) \geq f(c) \) for all \(x \in I \).
2. \(f(c) \) is the maximum of \(f \) on \(I \) when \(f(x) \leq f(c) \) for all \(x \in I \).

- min/max values of a function over \(I \) are called \text{extremum}.

Singular of extremum is extremum.

- min/max of a function over \(I \) implies \text{Absolute min/max}.

Not always going to have a min/max on \(\text{EVERY} \) Interval!

Thm 3.1 The Extreme Value Theorem

If \(f \) is continuous on a closed interval \([a,b]\), then \(f \) has both a minimum and a maximum on the interval.

\(\ast \) They \text{ EXIST!} No clue what they are... but they're something!

- Def Relative Extrema

1. If there is an open interval containing \(c \) on which \(f(c) \) is a max,
then \(f(c) \) is called a relative max of \(f \), can say "\(f \) has relative max at \(c \)."

2. If there is an open interval containing \(c \) on which \(f(c) \) is a min,
then \(f(c) \) is called a relative min of \(f \), can say "\(f \) has relative min at \(c \)."

- Plural is maxima & minima for relative/local.

- Def Critical Number

Let \(f \) be defined at \(c \). If \(f(c) = 0 \) \text{ OR } if \(f \) is not differentiable at \(c \), then \(c \) is a \text{critical number} of \(f \).

\[\text{Fig 3.4} \]
Theorem 3.2: Relative Extrema Occur Only at Critical Numbers

If \(f \) has a relative min/max at \(x = c \), then \(c \) is a critical number of \(f \).

Guidelines for Finding Extrema on a Closed Interval

1. Find the critical numbers of \(f \) in \((a, b) \).
2. Evaluate \(f \) at each critical number in \((a, b) \). “Plug in critical numbers.”
3. Evaluate \(f \) at each endpoint of \([a, b] \). “Plug in a & b.”
4. The smallest value of step 2 & 3 is the minimum (absolute/global minimum).
 The largest value of step 2 & 3 is the maximum (absolute/global maximum).

Example 1:

\[f(x) = 3x^4 - 4x^3 \] on \([1, 2] \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left End Pt.</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Right End Pt.</td>
<td>2</td>
</tr>
</tbody>
</table>

Absolute Min: \((0, 0)\)

Absolute Max: \((2, 16)\)

Example 2:

\[f(x) = 2 - 3x^{2/3} \] on \([-1, 3]\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left End Pt.</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Right End Pt.</td>
<td>3</td>
</tr>
</tbody>
</table>

Absolute Min: \((-1, -5)\)

Absolute Max: \((0, 0)\)

Example 3:

\[f(x) = 2 \sin(x) - \cos(2x) \] on \([0, 2\pi]\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left End Pt.</td>
<td></td>
</tr>
<tr>
<td>Right End Pt.</td>
<td></td>
</tr>
</tbody>
</table>