Exam 2 returned on Friday

Sec. 3.1 Covered Friday (2-20)

Quick Review of Sec. 3.1

1. Minimum: We say \(f(c) \) is a minimum value when \(f(c) \leq f(x) \) for \(x \in I \) (interval I)

2. Maximum (max.): \(f(c) \) is a max. value when \(f(c) \geq f(x) \) for \(x \in I \)

max/min known as extrema values (aka "extrema")

(Global)

Absolute max/min ex: \(y = x^2 - 4 \)

Absol. min at \((0, -4)\)

no absol. max
ex: \(y = f(x) = x^3 \)

no absd. max or min.

note cl: \((-\infty, \infty)\) open interval.

Extreme Value Thm.

If \(f(x) \) is cont. on a closed
then \(f \) has both a
max & min
on \([a,b]\).

\(I = \text{interval} = [a,b] \)

Steps to find a max/min on a closed interval

1. Find the critical \#s of \(f(x) \) on \((a,b)\).

 \text{When } f'(x) = 0 \text{ or DNE}

 look at \#s

 in \((a,b)\).

2. Create a list: Plug critical \#s into \(f(x) \)

3. Plug \(x = a, x = b \) into \(f(x) \): \(f(a) \)

4. Smallest numbers \((2 \& 3)\) \(\text{min} \)

5. Largest number \((2 + 3)\) \(\text{max} \)
ex: \(f(x) = 2 \sin(x) - \cos(2x) \) on \([0, 2\pi]\) ③

Find the max/min (or find extrema)

1. \(f'(x) = 2 \cos(x) - (-\sin(2x) \cdot 2) \)
2. \(f''(x) = 2 \cos(x) + 2 \sin(2x) = 0 \)

 Inputs not equal
3. \(\sin(2x) = 2 \sin(x) \cos(x) \)

2 \cos(x) + 2 \left(2 \sin(x) \cos(x) \right) = 0

2 \cos(x) + 4 \sin(x) \cos(x) = 0

2 \cos(x) \cdot (1 + 2 \sin(x)) = 0

2 \cos(x) = 0 \quad \text{or} \quad 1 + 2 \sin(x) = 0 \quad \text{[0, 2\pi]}

\begin{align*}
\frac{8 \sin(x) = -1}{2} & \quad 3\text{rd} \text{ & } 4\text{th} \text{Q.} \quad \text{Solve} \\
& \quad x = \frac{7\pi}{6} \quad \frac{11\pi}{6}
\end{align*}
(2) \(f\left(\frac{3\pi}{2}\right) = -3 \) \(\text{max} \)
\(f\left(\frac{7\pi}{6}\right) = -1 \)
\(f\left(\frac{11\pi}{6}\right) = -1.5 \) \(\text{min} \)

(3) \(f(0) = -1 \)
\(f(2\pi) = -1 \)

Sec. 3.2
Rolle's Theorem and Mean Value Theorem (MVT)

"Mean" \(\leftrightarrow \) "Average" Value

Rolle's Theorem:
Let \(f(x) \) be a cont. fn. on \([a, b]\) and diff. on \((a, b)\). If \(f(a) = f(b) \) then there is at least one \(c \in (a, b) \) such that \(f'(c) = 0 \).
Graph of Rolle's Thm

\[f'(c) = 0 \] (horizontal tan line)

Proof see Book.

ex: \(f(x) = x^2 + 6x \).

Find the 2 x-intercepts and find \(c \) between the 2 x-inter. Where \(f'(c) = 0 \) (guaranteed by Rolle's Thm).

1. \(f(x) = x^2 + 6x \) is cont. (poly.)
2. \(f(x) \) is diff. (poly).
3. Show \(f(a) = f(b) \) \(a, b \) are x-inter.

\[0 = x^2 + 6x \]
\[0 = x(x + 6) \]
\[x = 0, x = -6 \]
\[f(-e) = -0 \]
\[f(x) = 0 \]
\[f(a) = 0 \]

Rolle's Theorem can be used.

\[f'(x) = 2x + 4 \]
\[x = -3 \]

\[c = -3 \]

\[\int_{-2}^{4} (x^2 + 4x) \, dx = 0 \]

\[f(x) = (x-4)(x+4)^2 \]
\[g(x) = \frac{1}{2}x \]

Find \(c \) such that Rolle's Theorem applies and find

\[f(x) = (x-4)(x+4)^2 \]
\[f'(x) = (x-4)(x+4) \]
\[f(c) = 0 \]

1. \(f(x) \) is continuous on \([a, b]\).
2. \(f(x) \) is differentiable on \((a, b)\).
3. \(f(a) = f(b) = 0 \).

Show Rolle's Theorem applies and find \(c \).
We want the

$\frac{e}{2}$ or $x = 2$

$(-3, 4)$

$C = 2$

$C \in (a, b)$ such that

MVT

Mean Value Theorem

If $f(x)$ is cont. on $[a, b]$ then
$f'(c) = \frac{f(b) - f(a)}{b - a}$

$f(x) = (x+2)^2 - (x+2)(x-4) + \frac{(3x-6)(x+2)}{2}$

$x^2 + 4x + 4 - x^2 + 2x - 8 + x + 2$

$x^2 + 6x - 2 = 0$

$x = -2, 1$

Soln.

Det. element
\[
\frac{f(b) - f(a)}{b - a} = \text{slope of secant line}
\]

At some pt. \(x = c \)

By definition of derivative, \(\frac{f(b) - f(a)}{b - a} = \frac{y_2 - y_1}{x_2 - x_1} \)

Proof:

Find eqn. of line:

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

\[
y - y_1 = m(x - x_1)
\]

\[
y = f(x) = f(a)
\]

Hence:

\[
\frac{y - f(a)}{x - a} = \frac{f(b) - f(a)}{b - a}
\]
(a) \[
\left[\frac{(f(b) - f(a))}{b-a} \right] (x-a) + f(a) \\
= \left[\frac{f(b) - f(a)}{b-a} \right](x-a) + f(a)
\]

Secant line through endpoints.

Create a new fn.

Apply Rolle's Thm to \(g(x) \) if possible.

1. \(g(a) = f(a) \)
2. \(g(b) = f(b) \)
3. \(g(a) = f(a) \) is cont.
4. \(g(x) \) is diff.
5. \(g(x) \) is const.

\[
elimit_{x \to a} \left[\frac{f(b) - f(a)}{b-a} \right] = 0
\]
$y = \text{line}$

$\frac{dy}{dx} = \text{slope}$

$g(c) = 0$ is a line.

$g(x) = f'(x)$

$g(x) = \frac{f(x) - f(a)}{b-a}$

$g(x) = \frac{f(x) - f(a)}{b-a}$

$0 = g(c) = f'(c) = \frac{f(b) - f(a)}{b-a}$

Your goal is to find c in (a, b).

Note: $f(x) = x^4 - 8x + f(27)$. Show that c applies and c is guaranteed by MVT.

Example:

$f(x) = x^4 - 8x + f(27)$
\(f(x) \) is cont. / diff. blc poly.

Find \(c \in (0, 2) \) s.t. \(f'(c) = \frac{f(b) - f(a)}{b - a} \).

\[
f'(x) = 4x^3 - 8
\]

Set \(f'(x) = \text{slope} \)
\[
4x^3 - 8 = 0
\]
\[
4x^3 = 8
\]
\[
x^3 = 2
\]
\[
x = \sqrt[3]{2} \approx 1.26 \in (0, 2)?
\]

Sec. 3.1 + 3.2 Due Sunday @ 11:59 pm.

All odd problems are worked out on

www.calcchat.com

Tip: right-click - open in new tab for full size.