Sec. 3.3 The First Derivative Test

- Review
- Read graphs

\[\begin{align*}
\text{Inc.:} & \quad \text{Increasing} \\
\text{Dec.:} & \quad \text{Decreasing} \\
\end{align*} \]

"Turning points" \Rightarrow \text{Critical numbers}

Define

1. A fn. \(f(x) \) is \text{Inc.} on an interval \(I \) when for any \(x_1, x_2 \) in \(I \)
 \[f(x_1) < f(x_2) \]
2. A fn. \(f(x) \) is dec. on an interval \(I \) when for any \(x_1 < x_2 \) in \(I \)
\[
f(x_1) > f(x_2)
\]

Thm 3.5 Let \(f(x) \) be a cont. fn. on \([a,b]\) and diff. on \((a,b)\). Then

1. If \(f'(x) > 0 \) for all \(x \in (a,b) \) then \(f(x) \) is inc. on \((a,b)\).
2. If \(f'(x) < 0 \) for all \(x \in (a,b) \) then \(f(x) \) is dec. on \((a,b)\).
3. If \(f'(x) = 0 \) for all \(x \in (a,b) \) then \(f(x) \) is horizontal constant on \((a,b)\).

To find where a fn. \(f(x) \) is inc./dec.

1. Find the critical numbers of \(f \) on \((a,b)\).
 - Find \(f'(x) \) and \(f'(x) = 0 \) or one.
Plot critical numbers on a number line.

1. Pick a test pt. from each interval on the number line.
2. Plug (sub.) test pt. into f'(x).
 - If f'(x) > 0, f(x) is inc.
 - If f'(x) < 0, f(x) is dec.
3. Write ans. as open intervals.

Example: Determine the open intervals on which f(x) is inc. or dec.

f(x) = x^4 - 32x + 4
f'(x) = 4x^3 - 32 = 0 (always defined)

4(x^3 - 8) = 0
x^3 - 8 = 0
x^3 = 8
x = \sqrt[3]{8} = 2
Problem

The open intervals on which

\[f(x) = \begin{cases} x^3 - 6x^2 = 0 & \text{inc.} \\
2x^2 - 3 = 0 & \text{dec.} \\
x = 0 \end{cases} \]

Find

- \(f(x) = \begin{cases} 3x - 2 & \text{inc.} \\
2x^2 = 0 & \text{dec.} \\
x = 3/2 \end{cases} \)

Ans.

\[x = 0 \]

\[x = 3 \]

\[x = 3/2 \]
The First Derivative Test

Let \(c \) be a critical number of a continuous function \(f(x) \) on an open interval \(I \) containing \(c \). If \(f(x) \) is differentiable on \(I \) except possibly at \(x = c \), then \(f(c) \) is
(1) If \(f'(x) \) changes from neg. to pos. at \(x = c \), then \(x = c \) is a relative max.

(2) If \(f'(x) \) changes from pos. to neg. at \(x = c \), then \(x = c \) is a relative min.

(3) If \(f'(x) \) does not change direction at \(x = c \), then \(x = c \) is neither a max. nor a min.
Find relative extrema. To find relative extrema, use the First Derivative Test.

Ex.

\(f(x) = x^3 - 6x^2 + 9x \)

\(f'(x) = 3x^2 - 12x + 9 \)

To find relative extrema, set the derivative equal to zero:

\(3x^2 - 12x + 9 = 0 \)

Solve for \(x \):

\(x = 0, 1, \frac{3}{2} \)

Use the First Derivative Test.
\[f(x) = x^4 - 2x^3 f(1.5) = (1.5)^4 - 2(1.5)^3 = -1.69 \]

Find open intervals of \(\text{Inc.} \text{ Decl.} \),

\[f'(x) = 4x^3 - 6x^2 \]

\[f'(x) = 0 \]

\[x = \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, 2\pi \]

\[\frac{\pi}{3}, \frac{2\pi}{3}, \frac{\pi}{2}, \frac{3\pi}{2}, \pi \]

\[x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{\pi}{2}, \frac{3\pi}{2}, \pi \]

\[f(x) = 1 + 2\cos x = 0 \]

\[\cos x = -\frac{1}{2} \]

\[\theta = \frac{\pi}{3} \]
\[f'(\pi/2) = 1 + 2 \cos(\pi/2) = 1 \cdot \text{pos}. \]
\[f'(\pi) = 1 + 2 \cos(\pi) = -1 \cdot \text{neg}. \]
\[f'(3\pi/2) = 1 + 2 \cos(3\pi/2) = 1 \cdot \text{pos}. \]

\[
\begin{align*}
\text{inc.} & : (0, \frac{2\pi}{3}) \quad \left(\frac{4\pi}{3}, 2\pi\right) \\
\text{dec.} & : \left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)
\end{align*}
\]

\[\text{rel. extrema} \]
\[\text{rel. max at } x = \frac{2\pi}{3} \quad y = f\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} + \sqrt{3} \]
\[\text{rel. min. at } x = \frac{4\pi}{3} \quad y = f\left(\frac{4\pi}{3}\right) = \frac{4\pi}{3} - \sqrt{3} \]
Sec. 3.4 Concavity and the Second Derivative Test

Goal: What does \(f''(x) \) [2nd Der.] tell us about the fn. \(f(x) \)?

Concavity

- Graph is concave up — "holds water" "curving up"
- Graph is concave down — "spills water" "curving down"
Define let \(f(x) \) be diff. on an open interval \(I \).

1. The graph of \(f(x) \) is **concave up** on \(I \) when \(f'(x) \) is inc. on \(I \).
 \[f''(x) > 0 \]

2. The graph of \(f(x) \) is **concave down** on \(I \) when \(f'(x) \) is dec. on \(I \).
 \[f''(x) < 0 \]

Theorem 3.7 Test for Concavity

Let \(f(x) \) be a fn. whose 2nd derivative exists on the open interval \(I \).

1. If \(f''(x) > 0 \) on \(I \), the graph of \(f(x) \) is concave up on \(I \).
2. If \(f''(x) < 0 \) on \(I \), the graph of \(f(x) \) is concave down on \(I \).
Steps

1. Find $f''(x) = 0$ or DNE
2. Find where $f''(x)$ changes from $<$ to $>$ or from $>$ to $<$.
3. Plot a test pt. from each interval on the line. The function will be c. up or c. down.
4. $f''(x) > 0$ c. up
5. $f''(x) < 0$ c. down

Ex: $y = f(x) = -x^3 + 3x^2 - 2$.
$f(x) = -3x^2 + 6x$.
$f'(x) = 6x + 6 = 0$.
$x = -1$.
$f''(x) = -3x^2 + 6x$.
\[c. \text{up} \quad | \quad c. \text{down} \]

\[x = 1 \]

\[x = 0 \quad f''(0) = -6(0) + 6 = 6 > 0 \quad c. \text{up} \]

\[x = 2 \quad f''(2) = -6(2) + 6 = -6 < 0 \quad c. \text{down} \]

\[c. \text{up} \]

\[(-\infty, 1) \quad c. \text{down} \quad (1, \infty) \]

\[x = 1 \text{ is an inflection point} \] - this is a pt. where the fn. changes concavity.