Web Assign

- Update Flash
- Google Chrome
 or Firefox
- don't use Internet Explorer (IE)
- WebAssign Tech Help

 Help

 - Phone number – answer until 5 pm PST
 - Email them.

Deadline for Sec. 1.3 – HW due next Thursday.

Query 1

 next Wed.
 2 Questions
 Sec. 1.1 and 1.2.
Sec. 1.1

1. a) Calculus
 - v(t) = 20 + 4 \cos (t)
 - velocity is not constant
 - t = 30 sec
 - (40, 45°)
 - t = 30 sec
 - \(r = v(t) \)

 b) Estimate the distance traveled numerically (table)
 - \(d = r \cdot t \)

<table>
<thead>
<tr>
<th>t</th>
<th>v(t)</th>
<th>y(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(y_1 = \frac{20 + 4 \cos (t)}{t} \cdot y(t) \)
Section 1.2 (Cont.)

When limits DNE

1. At a vertical asymptote — fn. values $\to +\infty$ or $-\infty$

2. When the 2 one-sided limits are not equal.

3. When the fn. oscillates.

ex: $\lim_{x \to 0} \sin \left(\frac{1}{x} \right)$

→ Use graph or table
→ Look at values near 0
→ Outputs (fn. values) never settle down

⇒ Limit DNE.
Formal Definition of a Limit

We want to make precise:

$$\lim_{x \to c} f(x) = L$$

So far, "As x gets closer and closer to c, f(x) gets closer and closer to L".

Example: let $f(x) = x + 2$

What is $\lim_{x \to 2} f(x)$?

$$\lim_{x \to 2} f(x) = 4.$$

Question: How close to 2 does x have to be so $f(x)$ differs from 4 by less than 0.01?
(y = x + 2)

(y = x + 2)

a) When y = 4.01, what is x?

b) When y = 3.99, what is x?

x has to be within 0.01 of 2 (either x = 1.99 or x = 2.01)

1.5 - 1 = 1 - x

Recall Distance from a to b is |a - b|
\[\text{Distance from } x \text{ to } 2 = |x-2| \]

\[\text{Distance from } f(x) \text{ to } 4 = |f(x)-4| \]

Q: How close does \(x \) have to be to 2?

A: \(x \) has to be within 0.01 of 2

\[|x-2| < 0.01 \]

Q: Translate using absolute values:

\(f(x) \) is within 0.01 of 4

\[|f(x)-4| < 0.01 \]
Absolute Value Facts

1. Distance between \(a \) and \(b \) is
\[|b - a| = |a - b| \]

2. \(|a \cdot b| = |a||b|\)

3. \(|\frac{a}{b}| = \frac{|a|}{|b|}\)

4. (Triangle Inequality)
\[|a + b| \leq |a| + |b| \]

5. \(|w| < a \Rightarrow -a < w < a\)

6. \(|w| > a \Rightarrow w > a \text{ or } w < -a\)

Examples:
\[12x + 1 < 3 \Rightarrow -3 < 2x + 1 < 3 \]
Formal Definition of a Limit

Let \(f(x) \) be a function defined on an open interval \((a, b) \). Let \(L \) be a real number. Then, for each \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that for each \(x \) with \(0 < \left| x - c \right| < \delta \), we have

\[
\left| f(x) - L \right| < \varepsilon
\]

Identify how close does \(x \) have to be to \(c \) and \(f(x) \) is within \(0.01 \) of \(L \).
If \(|f(x) - L| < \varepsilon \)
\[f(x) - 1 < 0.01 \]

\(\varepsilon = 0.01 \)

"error"

New answer

"How close does \(x \) have to be to 2..."

\[y = 2x + 4 \]
\[y = 8.0 \]
\[x = ? \]
\[x = 2.005 \]

\[y = 7.99 \]
\[x = ? \]
\[x = 1.995 \]

\[|x - 2| < 0.005 \]
\[\delta = 0.005 \]
\[|x - c| < \delta \]
Given \(y = f(x) \)

- \(\lim_{x \to c} f(x) = L \)
- \(\varepsilon \)

Your job Find \(\delta \)

Ex:\(\lim_{x \to 1} (-2x + 4) = 2 \)

Find \(\delta \) so that \(|f(x) - L| < 0.001 \)

\(|x - c| < \delta \)

\(y = 2.001 \quad x = 0.9995 \)

\(y = 1.999 \quad x = 1.0005 \)

\(\delta = 0.0005 \)
Ex: Use the \(\varepsilon - \delta \) definition of limit to prove \(\lim_{x \to c} f(x) = L \):
\[
\text{Let } L = 5, \quad f(x) = \frac{x+2}{x+1}, \quad c = 3
\]

Find \(\delta \): When \(|x - c| < \delta \)
\[
|x - c| < \delta
\]

Assume \(\varepsilon > 0 \)
\[
|f(x) - L| < \varepsilon
\]
\[
|f(x) - 5| < \varepsilon
\]

Simple: Simplify
\[
\frac{3}{x+2} - 5| < \varepsilon
\]

Look for factors of \(|x-3| \) to find \(\delta \).
\[|x - 3| < 8 \]

Put the goal back to \(x \).

Let \(s = 8 \).

\[3 - 8 < x < 3 + 8 \]

\[-5 < x < 11 \]