Warm-up: Find the equation of the curve below. It shows the AC current from a household outlet.

\[i = A \cos(\beta t) \]

\[A = 5 \]

\[\beta = \frac{2\pi}{P} = \frac{1}{60} \]

\[\beta = 120\pi \]

\[i = 5 \cos(120\pi t) \]

\[\text{Graph 1 period} \]
a) \(y = \tan x = \frac{\sin x}{\cos x} \)

The domain of \(y = \tan x \) is all reals except odd multiples
\(\frac{\pi}{2} \).

\[x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \ldots \]

Notes
1. \(D = \{ x \mid x \neq (2k-1)\frac{\pi}{2} \} \) where \(k \) is integer
2. \(R = (-\infty, \infty) \)
b) \(y = \cot x = \frac{\cos x}{\sin x} \)

\[
\begin{align*}
\frac{\pi}{4} & : 1 \\
\frac{\pi}{2} & : 0 \\
\frac{3\pi}{4} & : -1
\end{align*}
\]
Notes

1) \(D = \{ x | x \neq k\pi \} \) where \(k \) an integer
2) \(R = (-\infty, \infty) \)
3) \(p = \pi \)
4) odd

Note: \(y = A \tan Bx \), then \(p = \frac{\pi}{B} \)

\[y = \sec x = \frac{1}{\cos x} \]

Helper: \(y = \cos x \)
Notes:
1. D: same as tangent
2. R: \(\{ x \mid x \leq -1 \text{ or } x \geq 1 \} \) or \((-\infty, -1] \cup [1, \infty)\) \text{ set builder notation}
3. even
4. $p = 2\pi$

\[d) \quad v = \frac{c}{c x} = \frac{1}{x} \]
d) \(y = \csc x = \frac{1}{\sin x} \)

helper: \(y = \sin x \))

\[
\begin{array}{c}
\text{Notes:} \\
\text{1. D: same as } y = \cot x \\
\text{2. R: same as } y = \sec x \\
\text{3. } P = 2\pi \\
\text{4. odd}
\end{array}
\]

(\(\text{ex} \)) Graph / full period
a) \(y = 3 \tan(2x) \)

\[\rho = \frac{\pi}{2} \]

\[\frac{\pi}{r} \]

\[x = -\frac{\pi}{4} \]

\[x = \frac{\pi}{4} \]

\[x = \left(\frac{\pi}{4} \right) \]

\[x = \left(\frac{\pi}{4} \right) \]

b) \(y = -3 \csc(\pi x) \)

helper: \(y = -3 \sin(\pi x) \)
\[\rho = \frac{2\pi}{\pi} = 2 \]
\[\text{Amp} = |1-3| = 3 \]