Recall: Let A, B, h > 0 and y = f(x)

<table>
<thead>
<tr>
<th>Function of the form...</th>
<th>Transforms the graph of y = f(x)...</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = f(x)+k</td>
<td>up k units</td>
</tr>
<tr>
<td>y = f(x)-k</td>
<td>down k units</td>
</tr>
<tr>
<td>y = f(x-h)</td>
<td>right h units</td>
</tr>
<tr>
<td>y = f(x+h)</td>
<td>left h units</td>
</tr>
<tr>
<td>y = Af(x)</td>
<td>by a vertical stretch/shrink factor of A</td>
</tr>
<tr>
<td>y = f(Bx)</td>
<td>by a horizontal stretch/shrink factor of 1/B</td>
</tr>
<tr>
<td>y = -f(x)</td>
<td>by a reflection across the x-axis</td>
</tr>
</tbody>
</table>

Goal: To graph trig functions of the form \(y = Af(Bx-h) + k \), where A, B, h, and k are constants

Example: Graph 1 full period of . . .

\(a) \ y = 2 \sin \left(x + \frac{\pi}{6} \right) \)

\(\text{(phase): } - \frac{\pi}{6} \)

\(\text{helper fcn: } y = 2 \sin x \) [Graph helper fcn as a dotted curve and then translate as needed]

\(\text{amp} = 2 \)
b) \[y = \cos \left(2x + \frac{\pi}{3} \right) \]

Phase shift: \[2x - \frac{\pi}{2} = 0 \]
\[x = \frac{\pi}{4} \]

P.S. \(\frac{\pi}{4} \)

helper: \[y = \cos 2x \]
\[\rho = \frac{2\pi}{2} = \pi \]
\[\text{Amp} = 1 \]

c) \[y = 3 \sin \left(\frac{\pi x}{2} \right) - 2 \]

helper: \[y = 3 \sin \left(\frac{\pi x}{2} \right) \]

y-shift: down 2 = \(-2\)

P.S. \[\frac{\pi x}{2} + 1 = 0 \]
\[\frac{\pi x}{2} = -1 \cdot \frac{2}{\pi} \]
\[x = -\frac{2}{\pi} \approx -0.6 \]

\[\rho = \frac{\pi}{\frac{2}{\pi}} = 2 \pi \cdot \frac{\pi}{2} = 4 \]
\[\text{Amp} = 3 \]
Let $y = -3 \cos \left(\frac{2x + \pi}{4} \right) - 5$

Find

a) Amplitude

$Amp = 3$

b) Period

$\frac{2\pi}{2} = \pi$

c) Phase shift

$2x + \frac{\pi}{4} = 0$

$2x = -\frac{\pi}{4}$

$x = -\frac{\pi}{8}$

d) Vertical shift

-5

-graph two periods

$y = \frac{3}{2} \cot \left(\frac{2x - \pi}{2} \right)$

helper:

$y = \frac{3}{2} \cot (2x)$

$\rho = \frac{\pi}{2}$

Phase shift: $2x - \frac{\pi}{2} = 0$

$x = \frac{\pi}{4}$

Final graph is in Green
Ex. The graph of voltage from an alternating household circuit is shown below. Find an equation that gives voltage at time t.

Ex. Find the equation of the graph in red

Ex. Find the first positive x-intercept of $y = x \cos(x)$ using a calculator.

Ex. Find the equation of the graph in red

Ex. Find the first positive x-intercept of $y = x \cos(x)$ using a calculator.