Goals:
1. To evaluate exponential functions.
2. To graph exponential functions.
3. To solve applications.

\[
\begin{array}{c|c}
 t \text{ (in hrs)} & N(t) = \# \text{ of bacteria after } t \text{ hrs} \\
0 & 1 = 2^0 \\
1 & 2 = 2^1 \\
2 & 4 = 2^2 \\
3 & 8 = 2^3 \\
4 & 16 = 2^4 \\
5 & 32 = 2^5 \\
\vdots & 2^t \\
N(t) = 2^t \\
\end{array}
\]

So, after 20 hrs, there are \(N(20) = 2^{20} = 1,048,576 \) bacteria.

Def: Any function of the form \(f(x) = a^x \) is called exponential. \((a > 0, a \neq 1)\)

Note: The \(n \)th term of a geometric sequence, \(a_n = a, r^{n-1} \) is an exponential function in the variable \(n \), where \(n \) is a whole number.
(e) Graph

a) \(f(x) = 2^x \)

\[
\begin{array}{c|c}
 x & f(x) = 2^x \\
-3 & 2^{-3} = \frac{1}{8} \\
-2 & \frac{1}{4} \\
-1 & \frac{1}{2} \\
0 & 1 \\
1 & 2 \\
2 & 4 \\
3 & 8 \\
\end{array}
\]

\(y = 0 \) is an asymptote.

6) \(g(x) = 2^{x-3} \)

Use transformations. Treat \(y = f(x) = 2^x \) as a base function.

\[
y = f(x) = 2^x
\]

\[
g(x) = 2^{x-1} - 3
\]

\[
g(x) = f(x-1) - 3
\]
Describe how to use the graph of \(f(x) = 2^x \) to get the graph of...

a) \(h(x) = -2^x \)

 \[= -f(x) \]

 reflection across \(x\)-axis

b) \(k(x) = 2^{-x} \)

 \[= f(-x) \]

 reflection across \(y\)-axis

c) \(l(x) = -2^{x+1} + 5 \)

 \[= -f(x+1) + 5 \]

 1. reflection across \(x\)-axis
 2. \(v\)-shift: 5
 3. \(h\)-shift: -1
Notes:

1. Domain of \(f(x) = a^x \) is \((-\infty, \infty)\)
2. Range of \(f(x) = a^x \) is \((0, \infty)\)

\[a > 1 \quad \text{and} \quad 0 < a < 1 \]

3. The natural exponential function is...
 \[y = e^x, \text{ where } e \approx 2.718 \ldots \]

Use a graphing utility to graph the function. If the function has a horizontal asymptote, state the equation of the horizontal asymptote.

\[f(x) = \frac{12}{1 + 5.5e^{-0.2x}}, \quad x \geq 0 \]

Horizontal asymptote: \(y = \frac{12}{1 + 5.5} \)

\[f(x) = \frac{12}{1 + 5.5e^{-0.2x}}, \quad x \geq 0 \]
The function \(A(t) = 200e^{-0.014t} \) gives the amount of medication, in milligrams, in a patient’s bloodstream \(t \) minutes after the medication has been injected into the patient’s bloodstream.

(a) Find the amount of medication, to the nearest milligram, in the patient’s bloodstream after 30 minutes.

\[\boxed{ \times \text{mg}} \]

(b) Use a graphing utility to determine how long it will take, to the nearest minute, for the amount of medication in the patient’s bloodstream to reach 50 milligrams.

\[\boxed{ \times \text{min}} \]