Tangent Planes and Linear Approximations

Goals:
1. To find the tangent plane to a surface at a given point.
2. To calculate the total differential of a multivariable function.
3. To determine whether or not a function is differentiable.

Derivation of the Tangent Plane to a Surface at a Point

Note that the tangent plane to \(z = f(x, y) \) at \((x_0, y_0, z_0)\) has equation of the form \(A(x-x_0) + B(y-y_0) + C(z-z_0) = 0 \)
or \(z-z_0 = a(x-x_0) + b(y-y_0) \).

Purple tangent line has equation \(z-z_0 = a(x-x_0) \) in \(xz\)-plane. The slope is \(a = f_x(x_0, y_0) \).

Similarly, if you hold \(x=x_0 \), you'll get \(b = f_y(x_0, y_0) \).

So the equation of the tangent plane is...
(a) Find the equation of the tangent plane to
\[f(x, y) = x^2 - 2xy + y^2 \]
 at \((1, 2, 1)\).

\[f_x(x, y) = 2x - 2y \implies f_x(1, 2) = 2 - 4 = -2 \]

\[f_y(x, y) = -2x + 2y \implies f_y(1, 2) = -2 + 4 = 2 \]

\[z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) \]

\[z - 1 = -2(x - 1) + 2(y - 2) \]

(b) Find a linearization, \(L(x, y) \), for \(f(x, y) \) at \((1, 2, 1)\).

\[L(x, y) = -2(x - 1) + 2(y - 2) + 1 \]

\[= -2x + 2 + 2y - 4 + 1 \]

\[= -2x + 2y - 1 \]

(c) Use \(L(x, y) \) to estimate \(f(0.95, 2.02) \)

\[L(0.95, 2.02) = -2(0.95) + 2(2.02) - 1 \]

\[= 1.14 \]

[Turns out \(f(0.95, 2.02) \approx 1.1449 \)]
Consider the tangent plane equation:

\[z = f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0) + z_0. \]

Let \(x = x_0 + \Delta x \) and \(y = y_0 + \Delta y \) and discuss what the result represents geometrically.

\[z = f_x(x_0, y_0)((x_0 + \Delta x) - x_0) + f_y(x_0, y_0)((y_0 + \Delta y) - y_0) + z_0 \]

\[= f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + z_0 \]

Definitions

1. Total differential

\[dz = f_x(x, y) \, dx + f_y(x, y) \, dy \]

Recall from Calc I:

\[dy = f'(x) \, dx \]

\[\Delta y \approx dy \quad \text{where} \quad \Delta y = f(x_0 + \Delta x) - f(x_0), \]

if differentiable and \(\Delta x \) "small."
\[\Delta y = \text{change in height of } y = f(x) \text{ from } x_0 \text{ to } x_0 + \Delta x \]

\[\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \]

change in height of \(f \) from \((x_0, y_0)\)
to \((x_0 + \Delta x, y_0 + \Delta y)\)

Note: For "well-behaved" functions and for "small" \(\Delta x, \Delta y \), \(\Delta z \cong \Delta z \) when going from inputs \((x_0, y_0) \) to \((x_0 + \Delta x, y_0 + \Delta y)\).

\[\text{ex} \] Let \(z = \sin(2x + 3y) \). Use \(d\ z \) to estimate \(\Delta z \) from \((-3, 2)\) to \((-2.95, 2.04)\)

\[d\ z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y \]

\[f_x(x, y) = 2 \cos(2x + 3y) \quad \rightarrow \quad f_x(3, 2) = 2 \]
\[f_y(x, y) = 3 \cos(2x + 2y) \quad \rightarrow \quad f_y(-3, 2) = 3 \]

\[d\ z = 2 \cdot (0.05) + 3 \cdot (0.04) = \boxed{0.22} \]

Note: \(\Delta z \cong 0.2182 \)

Note: 1. In calc I, differentiability \(\Rightarrow \) continuity.

2. **Problem:** Partialials exist \(\not\Rightarrow \) \(f \) is continuous

\[\uparrow \text{ see (ex) below} \]
[we want a definition of differentiability for \(z = f(x, y) \)
such that \(f \) differentiable \(\Rightarrow \)
\(f \) is continuous.]

(3) solution: come up with a definition of a differentiable function that ensures
\(\Delta z \approx dz \) for "small" input changes.

Definition: \(z = f(x, y) \) is \underline{differentiable} at \((x_0, y_0)\)
as long as \(\Delta z \) can be written as...
\[
\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y
\]
\[
dz_{(x_0, y_0)}
\]
where \(\epsilon_1, \epsilon_2 \rightarrow 0 \) as \((\Delta x, \Delta y) \rightarrow (0, 0)\).

Theorem 1: \(z = f(x, y) \) \underline{differentiable} at \((x_0, y_0)\)
\[\Rightarrow f \text{ is continuous at } (x_0, y_0). \]

Proof: uses the above def to show
\[
\lim_{(x, y) \to (x_0, y_0)} f(x, y) = f(x_0, y_0)
\]
means \(f \) is continuous at \((x_0, y_0)\).

Theorem 2: \(f_x, f_y \) continuous on \(D \), then
\(f \) is differentiable on \(D \).
So, just because the partials exist at a point does not mean that the function is well-behaved at that point.
f behaving badly around input $(0,0)$