Section 12.4: The Dot Product

Goals: 1. To find the dot product of two vectors
 2. To find the angle between two vectors
 3. To find the projection of a vector onto another vector
 4. To find the work done by a constant force

There are two kinds of products defined between vectors, dot and cross products. The dot product gets its name from the fact that it is represented by a dot (•). An important fact to remember is that the dot product of two vectors is always a scalar (that is, a number, not a vector). We will investigate cross products in the next section.

Definition: The dot product of two vectors is the sum of the product of the vectors' corresponding components. For example, suppose \(\mathbf{u} = \langle u_1, u_2, u_3 \rangle \) and \(\mathbf{v} = \langle v_1, v_2, v_3 \rangle \), then the dot product is given by \(\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \).

Notes: 1. The dot product is commutative and distributive.
 2. \(\mathbf{0} \cdot \mathbf{v} = 0 \)
 3. \(\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 \)
 4. See page 843 for a complete list of properties of the dot product.

Theorem 1: If \(\theta \) is the (smaller) angle between two nonzero vectors \(\mathbf{u} \) and \(\mathbf{v} \), then

\[
\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}
\]

Notes: 1. The last theorem gives us an alternate way of writing the dot product: \(\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\|\|\mathbf{v}\|\cos \theta \)
 2. From the alternative form of the dot product, we can see that, for two nonzero vectors \(\mathbf{u} \) and \(\mathbf{v} \), \(\mathbf{u} \cdot \mathbf{v} = 0 \) if and only if \(\theta = \frac{\pi}{2} \) (i.e. if and only if \(\theta \) is a right angle).
 3. Two vectors that meet at right angles are called orthogonal.

Definition: The vectors \(\mathbf{u} \) and \(\mathbf{v} \) are orthogonal if \(\mathbf{u} \cdot \mathbf{v} = 0 \)

Vector Projections

Suppose we drag a box with force \(\mathbf{u} \), as pictured below. The effective force in the direction of motion (i.e. in the direction of \(\mathbf{v} \)) is called the projection of \(\mathbf{u} \) onto \(\mathbf{v} \), denoted \(\text{proj}_\mathbf{v} \mathbf{u} \). Note that all we need to do to find \(\text{proj}_\mathbf{v} \mathbf{u} \) geometrically is drop a perpendicular down from the terminal point of \(\mathbf{u} \) to the line that contains \(\mathbf{v} \). So, in the pictures below, \(\mathbf{w}_1 = \text{proj}_\mathbf{v} \mathbf{u} \).
To find \(\text{proj}_v u \) analytically, we use the following theorem.

Theorem 2: If \(u \) and \(v \) are nonzero vectors, then

\[
\text{proj}_v u = \left(\frac{u \cdot v}{v^2} \right) v
\]

Note: The scalar projection of \(u \) onto \(v \) (denoted \(\text{comp}_v u \)) is given by the following formula:

\[
\text{comp}_v u = \frac{u \cdot v}{v^2}
\]

Work

Suppose \(d \) represents the distance between points \(P \) and \(Q \). Earlier in your study of calculus, you may have used the formula \(W = \|F\| \cdot d \) to calculate the work performed by a force with a constant magnitude \(\|F\| \) in moving an object through a distance \(d \). Unfortunately, this formula doesn't hold if the force isn't in the direction of motion. In this case, \(\|F\| \) must be replaced by the magnitude of the effective force in the direction of motion, which is \(\|\text{proj}_{PQ} F\| \).

Definition: The work \(W \) done by a constant force \(F \) as its point of application moves along the vector \(\overrightarrow{PQ} \) is given by the following formulas.

1. \(W = \|\text{proj}_{PQ} F\| \cdot \|PQ\| \)
2. \(\|F\| \cdot \|PQ\| \cos \theta \)
3. \(W = F \cdot \overrightarrow{PQ} \)

Where \(\theta \) is the angle between \(F \) and \(\overrightarrow{PQ} \).

Note: The standard units of work are the foot-pound and the newton-meter (called a joule).