Section 14.2: The Calculus of Vector-Valued Functions

Goals: 1. To differentiate vector-valued functions
2. To integrate vector-valued functions
3. To find a unit tangent vector

As previously stated, the calculus of vector-valued functions is defined to be equivalent to the calculus of its components. This means that

- The derivative of \(r(t) \) exists if the derivative of each of its components exist.
- The integral of \(r(t) \) exists if the integral of each of its components exist.

Notes: 1. These last two statements indicate that we differentiate and integrate vector-valued functions component-wise.
2. The derivative of a vector-valued function is actually defined as a limit:
 \[
 r'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}.
 \]
 But, by applying this definition, we can show that differentiation can be performed component-wise as long as the component functions are differentiable (see page 893).

Recall: A function is not differentiable in a place where its graph has a sharp "corner." In plain English, we would say that on a smooth curve there are no sharp corners or cusps.

Definition: A vector-valued function \(r(t) \) is smooth for all \(t \) in an open interval \(I \) if all of its component functions have continuous derivatives on \(I \) and \(r'(t) \neq 0 \) for any \(t \) in \(I \).

Notes: 1. Most of the differentiation rules for vector-valued functions are similar to the ones you learned in calculus I. See page 895 for a complete listing of these rules.
2. There are three "product rules," one for each kind of product: scalar, dot, and cross product.
3. Suppose \(r(t) \) is a position function of an object moving along a curve in space. Then \(v(t) = r'(t) \) is the object's velocity vector. We'll discuss this idea in detail in section 14.4.

Definition: Suppose \(r(t) \) represents a smooth curve on an open interval. The unit tangent vector is given by

\[
T(t) = \frac{r'(t)}{\|r'(t)\|}
\]