Section 16.5: Curl and Divergence

Goal:
1. To calculate the curl and divergence of a vector field

Note:
Even though it is an abuse of notation, we sometimes think of the differential operator \(\nabla \) as a vector \(\left\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\} \).

Definition:
The curl of \(\mathbf{F}(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k \) is

\[
\text{curl } \mathbf{F}(x,y,z) = \nabla \times \mathbf{F}(x,y,z) = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right)i + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right)j + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)k
\]

Theorem 1:
Suppose \(P, Q, \) and \(R \) have continuous first partial derivatives in an open sphere in space. The vector field given by \(\mathbf{F}(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k \) is conservative if and only if \(\text{curl } \mathbf{F}(x,y,z) = 0 \).

Definition:
The divergence in a plane of \(\mathbf{F}(x,y) = P(x,y)i + Q(x,y)j \) is given by

\[
\text{div } \mathbf{F}(x,y) = \nabla \cdot \mathbf{F}(x,y) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}
\]

The divergence in space of \(\mathbf{F}(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k \) is given by

\[
\text{div } \mathbf{F}(x,y,z) = \nabla \cdot \mathbf{F}(x,y,z) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}
\]

If \(\text{div } \mathbf{F} = 0 \), then \(\mathbf{F} \) is called divergence free.

Theorem 2:
If \(\mathbf{F}(x,y,z) = P(x,y,z)i + Q(x,y,z)j + R(x,y,z)k \) is a vector field and \(P, Q, \) and \(R \) have continuous second partial derivatives, then \(\text{div}(\text{curl } \mathbf{F}) = 0 \).

Theorem 3:
Green's Theorem in Vector Form

Let \(\mathbf{F}, C, \) and \(R \) have the same conditions on them as given in Green’s Theorem. Then

\[
\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{R} \text{curl } \mathbf{F} \cdot k \, dA.
\]

Theorem 4:
Let \(\mathbf{F}, C, \) and \(R \) have the same conditions on them as given in Green’s Theorem. Then

\[
\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{R} \text{div } \mathbf{F}(x,y) \, dA,
\]

where \(\mathbf{n} \) is the outward pointing unit normal vector to \(C \).