Homework Section 16.4

1. Consider the line integral \(\int_C x^2y \, dx + xy^3 \, dy \), where \(C \) is the triangle with vertices (0,0), (1,0), and (1,2):
 a) Evaluate the line integral directly.
 b) Evaluate the line integral using Green’s Theorem (Note how much easier this is!!!).

2. Use Green’s Theorem to evaluate the line integral along \(C \), which is a positively oriented curve:
 a) \(\int_C 2ye \, dx + e^y \, dy \), \(C \) is the square with sides \(x = 0, x = 1, y = 0, \) and \(y = 1 \).
 b) \(\int_C (2y + \cos x^2) \, dx + (x + e^{\sqrt{y}}) \, dy \), \(C \) is the boundary of the region enclosed by the parabolas \(y = x^2 \) and \(x = y^2 \).
 c) \(\int_C (x + y) \, dx + (xy) \, dy \), \(C \) is the boundary of the region lying between the graphs of \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 4 \).

3. Use Green’s Theorem to find the work done by the force field \(F(x, y) = x^2 \, \mathbf{i} + y(x - y) \, \mathbf{j} \) in moving a particle from (0, 1) along the y-axis to the origin, then along the x-axis to (1,0), and then along the straight line segment back to (0, 1).

4. Use a line integral to find the area of the region bounded by the graphs of \(y = 2x + 1 \) and \(y = 4 - x^2 \).