Chapter 4: Sound

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Overview

- Introduction to sound
- Digital audio
- MIDI audio
- MIDI versus digital audio
- · Recording and editing digital audio
- Audio file formats
- Adding sound to multimedia projects

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Introduction to Sound

- Vibrations in the air create waves of pressure that are perceived as sound.
- Sound waves vary in sound pressure level (amplitude) and in frequency or pitch.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Introduction to Sound cont. • Human ear ~ 20 Hz - 20 kHz. • Higher frequencies lost as we age. • A single note has a distinctive attack, and subsequently will decay. • Frequency spectrum grows then dies away. Percussive volume envelope Sustained volume envelope C 2011 The McGraw-Hill Companies, Inc. All folials reserved

Multimedia: Making II Work Cycle Moo.

Digital Audio

- Digital audio data is the actual representation of sound, stored in the form of samples.
- Samples represent the amplitude (or loudness) of sound at a discrete point in time.
- The quality of digital recording depends on the sampling rate (or frequency), that is, the number of samples taken per second.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Digital Audio (continued)

- The three sampling frequencies most often used in multimedia are CD-quality 44.1 kHz 16bit (65,536), 22.05 kHz, and 11.025 kHz.
- The number of bits used to describe the amplitude of a sound wave when sampled determines the sample size.

\triangle	Original waveform
	Sampling frequency
	Sampled data
\sim	Reconstru waveform

Digital Audio (continued)

- Additional available operations: format conversion, resampling or downsampling, fade-ins, fade-outs, equalization, time stretching, digital signal processing, looping, and reversing sounds.
- Short loops may be used to create voices for samplers; longer loops may be combined to build songs from repeating sections.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Digital Audio (continued)

- Audio resolution determines the accuracy with which sound can be digitized.
- Size of a monophonic digital recording = sampling rate x (bit resolution/8) x 1.
- Size of stereo recording = sampling rate x duration of recording in seconds x (bit resolution/8) x 2.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

MIDI Audio

- Since they are small, MIDI (Musical Instruments Digital Interface) files embedded in web pages load and play promptly.
- The length of a MIDI file can be changed without affecting the pitch of the music or degrading audio quality.
- Working with MIDI requires knowledge of music theory.

MIDI Audio (continued)

- MIDI is a shorthand representation of music stored in numeric form.
- It is not digitized sound.
- A sequencer software and sound synthesizer is required in order to create MIDI scores.
- MIDI is device dependent.

MIDI Versus Digital Audio

- MIDI is device dependent, digitized audio is device independent.
- MIDI files are typically much smaller than digitized audio.
- MIDI files may sound better than digital audio files when played on a high-quality MIDI device.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

MIDI Versus Digital Audio (continued)

- With MIDI, it is difficult to play back spoken dialog, while digitized audio can do so with ease.
- MIDI does not have consistent playback quality, digital audio does.
- Need knowledge of music theory in order to run MIDI, while digital audio does not have this requirement.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Recording and Editing Digital Audio

 Multimedia sound is either digitally recorded audio or MIDI (Musical Instrumental Digital Interface) music.

Audio File Formats

- A sound file's format is a recognized methodology for organizing data bits of digitized sound into a data file.
- On the Macintosh, digitized sounds may be stored as data files, resources, or applications such as AIFF or AIFC.
- In Windows, digitized sounds are usually stored as WAV files.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Audio File Formats (continued)

- MP3 compression is a space saver.
- MP4 is used when audio and video are streamed together.
- ACC (Advanced Audio Coding) is used by Apple's iTunes store.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Adding Sound to Multimedia Project

- File formats compatible with multimedia authoring software being used, along with delivery mediums, must be determined.
- Sound playback capabilities offered by end users' systems must be studied.
- The type of sound, whether background music, special sound effects, or spoken dialog, must be decided.
- Digital audio or MIDI data should be selected on the basis of the location and time of use.

Adding Sound to Multimedia Project (continued)

- Create or purchase source material.
- Edit the sounds to fit your project.
- · Test the sounds to be sure they are timed properly with your project.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Adding Sound to Multimedia Project (continued)

· Professional sound

- Compression techniques reduce space, but reliability suffers.
- Space can be conserved by downsampling or reducing the number of sample slices taken per second.
- File size of digital recording (in bytes) = sampling rate x duration of recording (in secs) x (bit resolution/8) x number of tracks.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Adding Sound to Multimedia Project 🌉 (continued)

- Recording on inexpensive media rather than directly to disk prevents the hard disk from being overloaded with unnecessary data.
- The project's equipment and standards must be in accordance with the requirements.
- It is vital to maintain a high-quality database that stores the original sound material.

- Keeping track of your sounds
 - Audio CDs
 - The Red Book (ISO 10149) standard for digitally encoding high-quality stereo.
 - 16 bit sample size and 44.1 KHz sampling rate.
 - The amount of digital sound information required for high-quality sound takes up a great deal of disk storage space.
 - Sound for your mobile
 - Sound for the Internet

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Adding Sound to Multimedia Project (continued) Applications December Take General Progress Applications Progress Applications December Take General Progress Applications General Progress Applicatio

Adding Sound to Multimedia Project (continued)

- Sound and image synchronization must be tested at regular intervals.
- The speed at which most animations and computer-based videos play depends on the user's CPU.

Adding Sound to Multimedia Project (continued)

- The sound's RAM requirements as well as the user's playback setup must be evaluated.
- Copyrighted material should not be recorded or used without securing appropriate rights from the owner or publisher.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Summary

- Vibrations in the air create waves of pressure that are perceived as sound.
- Multimedia system sound is digitally recorded audio or MIDI (Musical Instrumental Digital Interface) music.
- Digital audio data is the actual representation of a sound, stored in the form of samples.

© 2011 The McGraw-Hill Companies, Inc. All rights reserved

Summary (continued)

- MIDI is a shorthand representation of music stored in numeric form.
- Digital audio provides consistent playback quality.
- MIDI files are much smaller than digitized audio.
- MIDI files sound better than digital audio files when played on a high-quality MIDI device.