Section 6.6: Trigonometric Equations
Thursday, March 06, 2014
1:24 PM
Goal: To solve these things!

(ex) Solve (x is in radians)

$$
\begin{aligned}
& \frac{2 \sin x}{2}=\frac{\sqrt{3}}{2} \\
& \sin x=\frac{\sqrt{3}}{2} \\
& \sin ^{-1}(\sin x)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& x=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& x=\frac{\pi}{3} \text { or } x=\frac{Q \pi}{3}-\frac{\pi}{3}=\frac{2 \pi}{3} \\
& x=\frac{\pi}{3} \quad \text { or } \quad x=\frac{2 \pi}{3}, \quad 0 \leq x<2 \pi \\
& \text { all solutions } \\
& x=\frac{\pi}{3}+2 k \pi \text { or } x=\frac{2 \pi}{3}+2 k \pi
\end{aligned}
$$

where $k=$ integer $:\{\ldots, \ldots ; 2 ; 1,0,1,2,3, \ldots\}$
ex solve exactly for $0 \leq x<2 \pi$
a) factoring

$$
2 \sin x \cos x=\sqrt{3} \sin x
$$

$$
\begin{aligned}
& \frac{-\sqrt{3} \sin x-\sqrt{3} \sin x}{2 \sin x \cos x-\sqrt{3} \sin x=0} \\
& \sin x(2 \cos x-\sqrt{3})=0 \\
& \sin x=0 \cos x-\sqrt{3}=0 \\
& x=0, \frac{\pi}{6}, \pi=\frac{\pi}{6}=\frac{11 \pi}{6}=\frac{\pi}{3}
\end{aligned}
$$

b) taking roots

$$
\begin{array}{r}
2 \sin ^{2} x-1=0 \\
+1 \\
\frac{2 \sin ^{2} x}{2}=\frac{1}{2}
\end{array}
$$

$$
\begin{aligned}
& \sqrt{\sin ^{2} x}= \pm \sqrt{\frac{1}{2}} \\
& \sin x= \pm \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& \sin x= \pm \frac{\sqrt{2}}{2} \\
& \sin x=-\frac{\sqrt{2}}{2} \text { or } \sin x=\frac{\sqrt{2}}{2} \\
& \left.\alpha=\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}\right), \frac{\pi}{4}=\left(\frac{3 \pi}{4}\right) \\
& \left.x=\frac{\pi}{4}=\frac{5 \pi}{4}, \frac{\pi}{4}, \frac{7 \pi}{4}\right) \\
& x=\frac{\pi}{4}, \frac{3 \pi}{4}, ~
\end{aligned}
$$

a)

$$
\sqrt{\left(2 \cot x-\frac{1}{1)(\cot x-3}\right)}=0
$$

$2 \cot x-1=0$ or $\cot x-3=0$

$$
\begin{aligned}
& \cot x=\frac{1}{2} \text { or } \cot x=3 \\
& \tan x=2 \text { or } \tan x=\frac{1}{3} \\
& x=\tan ^{-1}(2) \\
& \approx 63.4^{\circ} \\
& { }^{\circ r} x \approx 180^{\circ}+63.4^{\circ}=243.4^{\circ} \\
& x=\tan ^{-1}\left(\frac{1}{3}\right) \\
& \approx 18.4^{\circ} \\
& \text { or } x=198.4^{\circ} \\
& \text { b) } 2 \cos ^{2} x-5 \cos x-5=0 \\
& a u^{2}+b u+c=0 \\
& u=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a=2 \quad b=-5 \quad c=-5
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{los} x=\frac{5 \pm \sqrt{25-4(2)(-5)}}{4} \\
& \cos x=\frac{5 \pm \sqrt{65}}{4} \\
& \cos x=\frac{5-\sqrt{65}}{4} \text { or } \cos x=\frac{5+\sqrt{65}}{4}>1 \\
& \begin{aligned}
x & =\cos ^{-1}\left(\frac{5-\sqrt{65}}{4}\right) \\
& \approx 139.96^{\circ}<\leftarrow_{.40^{\circ}}^{\alpha=180^{\circ}-139.96^{\circ}}
\end{aligned} \\
& =40.04 \\
& x \approx 180+40.04 \\
& =220.04^{\circ}
\end{aligned}
$$

c) $\underbrace{y_{\alpha}=45^{\circ}}_{\cos (4 x)=-\frac{\sqrt{2}}{2}}\left\{\begin{array}{l}\text { note: } y=\cos 4 x \text { has } \\ \text { period } \frac{2 \pi}{4}=\frac{\pi}{2}=90^{\circ}\end{array}\right.$

$$
\begin{aligned}
& \alpha=45^{\circ} \\
& 4 x=135^{\circ} \text { or } \quad 4 x=225^{\circ} \\
& x=\frac{135^{\circ}}{4} \text { or } x=\frac{225^{\circ}}{4} \\
& x=33.75^{\circ} \\
& x=56.25^{\circ} \\
& \text { or } \\
& =146.25^{\circ} \\
& =236.25^{0} \\
& =326.25^{6}
\end{aligned}
$$

d) $\sin x+2 \cos x=1$ (sec video labeled \#51)

$$
(2 \cos x)^{2}=(1-\sin x)^{2}
$$

$$
\begin{gathered}
4 \cos ^{2} x=1-2 \sin x+\sin ^{2} x \\
4\left(1-\sin ^{2} x\right)=1-2 \sin x+\sin ^{2} x \\
4-4 \sin ^{2} x=1-2 \sin x+\sin ^{2} x \\
0=-3-2 \sin x+5 \sin ^{2} x \\
0=5 \sin ^{2} x-2 \sin x-3 \\
0=(5 \sin x+3)(\sin x-1) \\
\sin x=-\frac{3}{5} \text { or } \sin x=1 \\
x=\sin ^{-1}\left(\frac{-3}{5}\right) \\
\approx \approx-0.644 \\
x=0.644 \\
x
\end{gathered}
$$

(ex) Solve for $0 \leqslant x<2 \pi$
（ex）Jolve tor \smile ミxーの＂

$$
\begin{aligned}
& \text { a) } \underbrace{\cos 2 x}_{\text {l }}=2 \cos x-1 \\
& -\underbrace{2 \cos x}_{2 \cos ^{2} x-1}=2 \cos x-1 \\
& 2 \cos ^{2} x-2 \cos x=0 \\
& 2 \cos x(\cos x-1)=0 \\
& 2 \cos x=0 \quad \text { or } \quad \cos x-1=0 \\
& \frac{\cos x=0}{2} \frac{\cos x}{2 \cos x}=1 \\
& x=\frac{3 \pi}{2} \quad x=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \underbrace{\sec ^{2} x+\sqrt{3} \sec x}-2 \sec x-2 \sqrt{3}=0 \\
& \underbrace{\sec x}(\underbrace{\sec x+\sqrt{3}})-2(\underbrace{\sec x+\sqrt{3}})=0 \\
& (\sec x-2)(\sec x+\sqrt{3})=0 \\
& \sec x=2 \quad(\sec x=-\sqrt{3} \\
& \cos x=\frac{1}{2} \quad \cos x=-\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3} \\
& x=\frac{\pi}{3}, 2 \pi-\frac{\pi}{3}=\frac{5 \pi}{3} \quad \cos ^{-1}(\cos x)=\cos ^{-1}\left(\frac{\sqrt{3}}{3}\right) \\
& x=\cos ^{-1}\left(\frac{\sqrt{3}}{3}\right) \\
& x \approx 2.19 \\
& \alpha=\pi-2.19 \\
& x \approx 4.09
\end{aligned}
$$

