Section 8.5: Polar Coordinates
Friday, March 28, 2014
2:12 PM
Goals:

1. To convert between polar and rectangular coordinates.
2. To graph in polar coordinates.

Another system for locating points using a radius and an angle (r, θ)

(ex) plot the points

$$
\begin{aligned}
\left(2, \frac{\pi}{3}\right) & =\left(2, \frac{11}{3}++1\right) \\
& =\left(2, \frac{1 \pi}{3}\right)
\end{aligned}
$$

b) $\quad\left(-1, \frac{\pi}{4}\right)$

coordinate conversions
$n o^{2} \cdot\left\{\begin{array}{l}n^{2} \\ x=r \cos \theta \\ y=r \sin \theta \\ \tan \theta=\frac{y}{x}\end{array}\right.$

(ex) convert to rectangular
a)

$$
\begin{aligned}
& (r, \theta)=\left(\left(5, \frac{\pi}{6}\right)\right. \\
& x=r \cos \theta=5 \cos \frac{\pi}{6}=\frac{5 \sqrt{3}}{2} \\
& \therefore=r \sin \theta=5 \sin \frac{\pi}{6}=\frac{5}{2}
\end{aligned}
$$

$$
\begin{aligned}
& r=\cos \theta \\
& b \cdot r=r \cos \theta \\
& r^{2}=r \cos \theta \\
& x^{2}+y^{2}=x \\
& \left.\left(x^{2}-1 x+\frac{5 \sqrt{2}}{2}\right)+y^{2}=0+\frac{5}{2}\right) \\
& \left(x-\frac{1}{2}\right)^{2}+y^{2}=\left(\frac{r}{4}\right)\left(\frac{1}{2}\right)^{2}(x-h)^{2}+(y-k)^{2}=r^{2} \\
& \text { std form of a circle! } \\
& C\left(\frac{1}{2}, 0\right) \\
& \text { radius }=\frac{1}{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
& r=\cos \theta+2 \sin \theta \\
& r \cdot r=r(\cos \theta+2 \sin \theta)
\end{aligned}
$$

$$
\begin{aligned}
r^{2} & =\underbrace{r \cos \theta}+2 r \sin \theta \\
x^{2}+y^{2} & \equiv x+2 y^{\prime}
\end{aligned}
$$

Exercise: show this a circle by writing in std. form
(ex) convert to polar
a) $(x, y)=(-1,1)$

$$
\begin{align*}
& r^{2}=x^{2}+y^{2} \\
& r^{2}=(-1)^{2}+(1)^{2} \\
& r^{2}=2 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\tan \theta= & \frac{1}{-1}=-1 \\
& -45^{\circ} \\
2 & =45^{\circ} \\
A= & 180^{\circ}-45^{\circ}=\left(135^{\circ}\right)
\end{aligned}
$$

$$
\theta=180^{\circ}-45^{\circ}=135^{\circ}
$$

b)

$$
\begin{aligned}
& x=-4 \\
& t \\
& r \cos \theta=-4 \\
& r=-\frac{4}{\cos \theta} \\
& r=-4 \sec \theta
\end{aligned}
$$

c)

$$
\begin{gathered}
y^{2}=4 y \\
(r \sin \theta)^{2}=4(r \sin \theta) \\
r^{2} \sin ^{2} \theta=4 r \sin \theta
\end{gathered}
$$

$$
2
$$

(ex) Graph
a) $r=2$

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& x^{2}+y^{2}=4
\end{aligned}
$$

convert to rectangular

$$
\begin{aligned}
\tan (\theta) & =\tan \left(\frac{\pi}{3}\right) \\
\frac{y}{x} & =\sqrt{3} \\
y & =\sqrt{3} x
\end{aligned}
$$

Special Polar Graphs
Limacon

1

$$
r=a+b \sin \theta
$$

Rose Curves

$$
r=a \sin (n \theta) \text { or } r=a \cos (n \theta) \text {, where }
$$

n is a counting number $>1 . \quad(n=2,3,4, \cdots)$
If n is odd $\rightarrow n$ petals

$$
n \text { is even } \rightarrow 2 n \text { petals }
$$

(ex) Graph
a)

$$
\begin{gathered}
0=1+2 \cos \theta \\
\cos \theta=\frac{-1}{2} \\
\alpha=\frac{\pi}{3} \\
\theta=\pi-\frac{\pi}{3}=\frac{2 \pi}{3} \\
3 y^{n}+0 y-a x^{b}
\end{gathered}
$$

b)

$$
r=2 \sin 3 \theta
$$

$l_{n=3} \rightarrow 3$ odd $\rightarrow 3$ petals

$$
\frac{2 \pi}{63}+\frac{\pi}{6}
$$

$$
p=\frac{2 \pi}{3}
$$

(ex) Graph

b) $r=4 \cos 2 \theta$

$$
n=2 \rightarrow 4 \text { petals }
$$

$$
\frac{360^{\circ}}{4}=90^{\circ}
$$

