Section 5.3: Trigonometric Functions of Any Angle

Goal: To find the values of the 6 trig ratios (functions) of any angle (not just acute).

Def: Any point except $(0,0)$ can indicate an angle in std. position
(ex) a) Find the six trig fetus of the angle determined $(2,5)$.

6) $(-2,-5)$ (same thing)

$$
\begin{aligned}
& \sin \theta=-\frac{5}{\sqrt{2.9}} \\
& {\left[\cos \theta=\frac{-2}{\sqrt{29}}\right.} \\
& \tan \theta=\frac{-5}{-2}=\frac{5}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{ll}
\tan \theta=\frac{-2}{-2}=\frac{2}{2} & \mid(-2,-5) \\
\cot \theta & =\frac{2}{5} \\
\sec \theta & =-\frac{\sqrt{29}}{2}
\end{array}\right. \\
& \csc \theta=-\sqrt{29} / 5
\end{aligned}
$$

$$
\begin{aligned}
& \frac{12 y}{x} \quad \sin \theta=\frac{y}{r} \quad \text { quiz } \\
& \text { at } 90^{\circ}, y=r \\
& \text { so } \sin 90^{\circ}=\frac{Y}{r}=\frac{r}{r}=1
\end{aligned}
$$

(ex) Given: $\tan \theta=1$ and $\sin \theta<0$.
Find $\cos \theta$.
Find θ^{\prime} s quadrant
 θ is in Q III

$$
\begin{aligned}
& \cos \theta=\frac{x}{r}=\frac{n e q}{\cos }=n e g \\
& x=\mid-1 \\
& \begin{array}{l}
\cos \theta=\frac{1}{1} \\
-1=y|r| \\
\frac{-1}{r}+(-1)^{2}+(-1)^{2} \quad \cos \theta=\frac{-1}{2} \cdot \sqrt{\frac{2}{2}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& r^{2}=(-1)^{2}+(-1)^{2} \cos \theta \\
& r^{2}=2 \\
& r=\sqrt{r}=\frac{-1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
&=-\frac{\sqrt{2}}{2}
\end{aligned}
$$

Reference Angles
The reference angle, α, of angle θ in $s+d$. position is the acute angle formed between the terminal side of θ and the x-axis

(ex) Find α.
a) 135°

$$
\alpha=180^{\circ}-135^{\circ}=45^{\circ}
$$

b) 300°

$$
\alpha=360^{\circ}-300^{\circ}=60^{\circ}
$$

Big Idea: For a fris $f(t n, f(\theta), f(\theta)= \pm f(\alpha)$ one or the other.
(ex) Find using ref. angles
a)

$$
\sin 135^{\circ}
$$

$$
\begin{aligned}
\sin 135^{\circ} & =\sin 45^{\circ} \\
& =\frac{\sqrt{2}}{2}
\end{aligned}
$$

b) $\cos 135^{\circ}$

$$
\begin{aligned}
\cos 135^{\circ} & =-\cos 45^{\circ} \\
& =-\frac{\sqrt{5}}{2}
\end{aligned}
$$

c) $\tan \frac{7 \pi}{6}$

$$
\begin{aligned}
\alpha & =\frac{1 \pi}{6}-\frac{6 \pi}{6} \\
& =\pi / 6 \\
\tan \frac{7 \pi}{6} & =\tan \frac{\pi}{6}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

