Goal: $T_{0}+,-, \div$ complex numbers
solve: $x^{2}=1$
We invent the number $i=\sqrt{-1}$ to solve this equation.

$$
\begin{aligned}
& i^{\prime}=\sqrt{-1} \\
& i^{0}=1 \\
& l^{\prime}=i \\
& l^{2}=-1 \\
& i^{3}=i^{2} \cdot i=-l \\
& i^{4}=i^{2} \cdot i^{2}=1 \\
& i^{5}=i^{4} \cdot i \\
& i^{6}=i \\
& i^{1} \\
& i^{8}=: 4 \cdot 4 \\
& i^{8}=-1
\end{aligned}
$$

(ex) simplify i^{99}

$$
4 \sqrt{24} \begin{array}{|c}
\frac{24}{19} \\
\hline
\end{array}
$$

$$
i^{99}=i^{3}=-i
$$

(ex) simplify
a) $\sqrt{-25}$
b) $\sqrt{-8}$
$5 i$

$$
\begin{aligned}
& =i \sqrt{8} \\
& =i 2 \sqrt{2} \\
& =2 i \sqrt{2}
\end{aligned}
$$

Any \# of the form $a+b i$, where a and b are real is complex
(ex)

$$
\begin{aligned}
& 2+3 i \\
& a=2, \quad b=3
\end{aligned}
$$

(ex) Perform the ops
a) $\frac{(\sqrt{1-2 i)+(-3-4 i})}{-2-6 i)}$
b)

$$
\begin{aligned}
& (1-2 i)-(-3-4 i) \\
& 1-2 i+3+4 i \\
& 4+2 i
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) }(-3+5 i)(4-6 i) \\
& -12+\underbrace{18 i+20 i}-30 i^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -12+38 i-30(-1) \\
& 18+38 i \\
& \frac{\frac{2}{(3-4 i)} \cdot \frac{(3+4 i)}{(3+4 i)}}{\frac{6+8 i}{9-16 i^{2}}} \\
& \frac{6+8 i}{25} \\
& \frac{6}{25}+\frac{8}{25} i
\end{aligned}
$$

e) $\sqrt{-2} \cdot \sqrt{-10}$

$$
\begin{aligned}
& =i \sqrt{2} \cdot i \sqrt{10} \\
& =i^{2} \sqrt{20} \\
& =-\sqrt{20} \\
& =-2 \sqrt{5}
\end{aligned}
$$

