Parabolas and Ellipses (and Hyperbolas)

Goals:

1. To graph these conics.
2. To write a given conic in standard form

Homework

1. See Announcement posted on Webassign
2. Watch YouTube Video for Section 8.5. Expect a quiz.

Standard Form of a Parabola with vertex (h,k)

Example: Find the vertex, axis of symmetry and graph the parabola.

$x=4-\frac{2}{3}$
$\frac{12}{3}-\frac{2}{3}$
(10

Reflective Property of a Parabola

48.

The Hale Telescope The parabolic mirror in the Hale Telescope at the Palomar Observatory in Southern depth of 3.75375 inches. Der of 200 inches and a (to the nearest inch).
(100, 3.75375)

$$
\begin{aligned}
(x-h)^{2} & =4 p(y-k) \\
x^{2} & =4 p y \\
\frac{(100)^{2}}{4(3.75375)} & =\frac{4 p(3.75375)}{4(375375)} \\
p & =\frac{100^{2}}{(4 * 3.753375)}
\end{aligned}
$$

$$
x^{2}=\frac{p \approx 666 \text { inches }}{(4.666) y}
$$

Standard Equation of a Circle

$$
\begin{aligned}
& \frac{(x-h)^{2}}{r^{2}}+\frac{(y-k)^{2}}{r^{2}}=\frac{r^{2}}{r^{2}} \quad[\text { center }(h, k) \text { radius }=r] \\
& \frac{(x-h)^{2}}{r^{2}}+\frac{(y-k)^{2}}{r^{2}}=1
\end{aligned}
$$

Standard Equations of an Ellipse with center (h,k)

$$
\begin{align*}
& \frac{(x-h)^{2}}{a^{2}}+\frac{(y-12)^{2}}{b^{2}}=1 \\
& \frac{(x-h)^{2}}{b^{2}}+\frac{(y-1<)^{2}}{a^{2}}=1 \tag{array}
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{l}
2(y+2)^{2}=-\frac{3}{2}(x-4)\left(y^{2-2} / L\right. \\
\left((y+2)^{2}=-\frac{3}{2}(x-4)\right.
\end{array} \\
& y=0 \text { dst ens } \\
& 3 x-4=0 \\
& x=\frac{4}{3}
\end{aligned}
$$

Example: Find the standard equation of the following ellipse and graph it.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\text { (ex) } \frac{(x-2)^{2}}{4} \Theta \frac{(y+3)^{2}}{9}=1
$$

$$
c_{1}(2,-3) \text { hyp perbola }
$$

