Goals:

1. To find the nth term of an arithmetic sequence.
2. To find the sum of the first n terms of an arithmetic sequence.

Consider the sequence

$$
a_{n}=5 n-3
$$

From below formula $a_{n}=a_{1}+(n-1) d$

$$
\begin{aligned}
& a_{n}=2+(n-1) 5 \\
& a_{n}=2+5 n-5 \\
& a_{n}=5 n-3
\end{aligned}
$$

Ia linear function (domain is natural \#'s)

This kind of sequence, $a_{n}=a_{n-1}+\frac{d}{\uparrow}$ is called arithmetic.

Def: In an arithmetic sequence each term is found by adding a common difference, d, to the previous term.

An Explicit Formula for a_{n} (arithmetic)

$$
\begin{aligned}
a_{1} & =a_{1} \\
a_{2} & =\left(a_{1}+1 d\right. \\
a_{3} & =a_{2}+d=\left(a_{1}+d\right)+d=\left(a_{1}+(2 d)\right. \\
a_{4} & \left.=a_{3}+d=\left(a_{1}+2 d\right)+d=a_{1}+3\right) d \\
& =a_{1}+4 d \\
a_{5} & \vdots \\
a_{n} & =a_{1}+(n-1) d
\end{aligned}
$$

$$
\overline{a_{n}}=a_{1}+(n-1) d
$$

Explicit for a_{n} (for an arithmetic sequence)
(ex) Find a_{n} and a_{10} for

$$
\begin{aligned}
& 2,1,12,17, \ldots \\
a_{n} & =5 n-3 \quad \text { (see above) } \\
a_{10} & =5(10)-3 \\
& =47
\end{aligned}
$$

(ex) Given $a_{6}=-14$ and $a_{8}=-20$, Find a_{7} and a_{15}.

$$
\begin{aligned}
& \left.\begin{array}{ccc}
-14 & -20 \\
n_{6} & 4 & \lambda_{7} \\
a_{6} & a_{7} & a_{8} \\
n=6
\end{array} \right\rvert\, d=\frac{-20+(+14)}{2} \\
& a_{7}=-14-3=-17 \\
& \text { \# } \left.a_{n}=a_{1}+\binom{n}{p}-1\right) \underset{p}{d} \\
& n=6 \downarrow \\
& -14=a_{1}+(6-1)(-3) \\
& a_{6} \\
& -14=a_{1}-15 \\
& a_{1}=1 \\
& a_{n}=1+(n-1)(-3) \\
& a_{15}=1+(15-1)(-3) \\
& =1+(14)(-3) \\
& =1+(-42) \\
& =-41
\end{aligned}
$$

Def: The sum of terms of a sequence is called a
series.

$$
\begin{aligned}
& \left.a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\} \text { terms of } \\
& \left.S_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\ldots .+a_{n}\right\} \text { series }
\end{aligned}
$$

"Sum of list n terms"
or "nth partial sum"
(ex) Find S_{100} for the counting
numbers

$$
\begin{aligned}
& \begin{array}{r}
1 S_{100}=\binom{1}{+12}+\binom{3}{98}+\binom{4}{97}+\cdots+\binom{100}{1} \\
+\quad 15_{100}=\cdots+(100)
\end{array} \\
& 2 s_{100}=\underbrace{101+101+101+101+\cdots+101}_{100 \text { terms of } 101}
\end{aligned}
$$

$$
\begin{aligned}
2 s_{100} & =100(101) \\
s_{100} & =5050
\end{aligned}
$$

For a general arithmetic series...
Using a similar technique, the sum of generic arithmetic series is

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

(ex) Find the nth partial sum, S_{n}, of the sequence given by $a_{n}=4 n-3$ where $n=12$. ie. Find S_{12} (sum of 1 st 12 terms)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
\rightarrow a_{1} & =4(1)-3=(1), \quad a_{12}=4(12)-3 \\
& =45) \\
S_{12} & =\frac{12}{2}(1+45) \\
& =6(46) \\
& =276
\end{aligned}
$$

(ex) Find S_{n} when $a_{n}=4-n$
and $n=40$

$$
\begin{aligned}
& a_{1}=3, a_{40}=-36 \\
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{4}=\frac{40}{2}(3-36)
\end{aligned}
$$

$$
\begin{aligned}
& =20(-33) \\
& =-660
\end{aligned}
$$

e^{x}
Theater Seating The seating section in a theater has 27 seats in the first row, 29 seats in the second row, and so on, increasing by 2 seats each row for a total of 10 rows. How many seats are in the 10th row, and how many seats are there in the section?

Aufmann, College Algebra, 8 e
http://www.webassign.net/ebooks/aufcolalg8/shell.html?s=c90092d0840a7d7582721201ebef04ab\&c=249283\&f=4721409\&type=youbook\&id= 462
Screen clipping taken: 4/28/2014 4:50 PM

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=27+(n-1) 2
\end{aligned}
$$

$$
\begin{aligned}
\binom{\text { \# of seats }}{\text { in } 10 \text { th row }}=a_{10} & =27+(10-1)(2) \\
& =27+18 \\
& =45 \text { seats }
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
\binom{\text { * Seats in }}{\text { section }}=S_{10} & =\frac{10}{2}\left(\underset{27}{a_{1}}+\tilde{\sim}_{10}^{a_{10}}(n=10)\right. \\
& =5(72) \\
& =360 \text { seats }
\end{aligned}
$$

