Section 11.5: The Binomial Theorem Wednesday, May 07, 2014
5:02 PM

Pascal's Triangle

$$
\begin{aligned}
& \frac{\text { row \# }}{0} \\
& \begin{array}{lll}
1 & 1 & 1 \\
n=2 & 1 & 1
\end{array} \\
& \left.\begin{array}{cccc}
3=4 & 1 & 4 & 4 \\
5 & 1 & 5 & 10
\end{array}\right|_{\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right)} ^{3}{ }^{3}\left(\begin{array}{l}
4 \\
4 \\
3
\end{array}\right) \\
& (a+b)^{2}=1 a^{2}+2 a b+1 b^{2} \\
& (a+b)^{3}=(a+b)\left(a^{2}+2 a b+b^{2}\right) \\
& =a^{3}+2 a^{2} b+a b^{2}+b^{3} \\
& \frac{1 a^{2} b+2 a b^{2}}{1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}} \\
& \text { n } \\
& (a+b)^{(4)}=\binom{4}{0} a^{4}+\binom{4}{1} a^{3} b^{1}+\binom{4}{2} a^{2} b^{2}+\binom{4}{3} a^{1} b^{3}+\binom{4}{4} b^{4} \\
& (a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\binom{n}{3} a^{n-3} b^{(3)}+\cdots+\binom{n}{n} b^{n}
\end{aligned}
$$

$$
(a+b)^{n}=\binom{n}{0} a^{\prime \prime}+\binom{n}{1} a^{\prime \prime} \dot{b}+\binom{11}{2} a^{\prime \prime} \quad b^{n}+\binom{11}{3} a^{\prime \prime-3} b^{\prime \prime}+\underset{\sim}{\cdots}+\binom{n}{n} b^{\prime \prime}
$$

Notation: $\binom{n}{1 B} \quad n$ choose $k "$
Stands for the binomial coefficient of $(a+b)^{n}$ from the term in the ${ }^{\text {binomial }}$ expansion whose variable part is $a^{n-k} b^{(k}$

b) $\binom{3}{3}=1=\binom{3}{0}=\binom{n}{n}=\binom{n}{0}$

Binomial Theorem

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{k} a^{n-k} b^{k}+\cdots\binom{n}{n} b^{n}
$$

(ex) Find $\underbrace{\text { Fourth term: }}_{\text {actual fourth }}(x+2 y)^{\downarrow}$ term

$$
\left.\begin{array}{rl}
b^{3} & =\binom{12}{3} a^{9} b^{3} \\
& =\binom{12}{3} x^{9}(2 y)^{3} \\
k
\end{array}\right) \quad \begin{gathered}
(k+1) \text { st binomial } \\
\text { coefficient }
\end{gathered}
$$

(ex) Find the term in the binomial expansion
$(\underbrace{3 r}_{3 r}+\underbrace{2 s}_{6})^{9}$ that contain s^{7}

$$
\begin{aligned}
& n=9 \\
&\binom{9}{7} a^{b^{2-7}} b^{7}=\binom{9}{7} a^{2} b^{7} \\
&=\binom{9}{7}(3 r)^{2}(2 s)^{7} \\
&=\binom{9}{7} 9 r^{2} 128 s^{7} \\
&=41472 r^{2} s^{7}
\end{aligned}
$$

(ex) multiply out: $\left(\begin{array}{cc}x & -4 y\end{array}\right)^{5}$

$$
a \quad b=-4 y
$$

$$
(a+b)^{5}=a^{5}+5 a^{4} b+100^{3} a^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}-64 b^{5} \quad 25 x^{4}
$$

$$
\begin{aligned}
(x-4 y)^{5} & =x^{5}+5 x^{4}(-4 y)+10 x^{3}(-4 y)^{2}+10 x^{2}(-4 y)^{3}+5 x(-4 y)^{4}+(-4 y)^{3} \\
& =x^{5}-20 x^{4} y+160 x^{3} y^{2}-640 x^{2} y^{3}+1280 x y^{4}-1024 y^{5}
\end{aligned}
$$

