Section 3.2: Graphing Polynomial Functions

Tuesday, October 14, 2014 4:25 PM

Goals:

1. To analyze the behavior of polynomials for extreme x-values.
2. To analyze the behavior of polynomial function at x-intercepts.
3. To find relative extrema.
4. To graph polynomial functions.

$$
\underbrace{|x|} \text { is "big" }
$$

Leading Term Test: For extreme x-values of a polynomial, as goes the leading term, so goes the entire polynomial.

Ex. Use the Leading Term Test to determine the far left
and far right behavior of the function:
$P(x)=-6 x^{4}+2 x^{3}-5 x^{2}+x-1$

$$
\begin{aligned}
& \text { So as } x \rightarrow \infty, P(x) \rightarrow-\infty \\
& \quad \text { as } x \rightarrow-\infty, P(x) \rightarrow-\infty
\end{aligned}
$$

the
Ex. Determine the behavior of $\mathrm{P}(\mathrm{x})$ at the x -intercepts.
$P(x)=x^{4} \cdot(x+2)^{3}(x-3)^{2}(x+1)^{5}$
$0=x^{(4)}(x+2)^{3}(x-3)^{(2)}(x+1)^{5}$
$x^{-1}=0, x+2=0, x-3=0, x+1=0$

$$
x=0, \quad x=-2
$$

$(0,0) \quad(-2,0) \quad(3,0) \quad(-1,0)$

Ex. Graph $\mathrm{P}(\mathrm{x})$. Be sure to. . .

1. Use LTT
2. Plot intercepts
3. Plot points
4. Use symmetry when applicable
a) $p(x)=1 x^{3}-6 x^{2}+9 x+0$

$$
\text { (1) } \begin{aligned}
& y=x^{3} \\
& x \rightarrow \infty, p(x) \rightarrow \infty \\
& x \rightarrow-\infty, p(x) \rightarrow-\infty
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 0=x^{3}-6 x^{2}+9 x \\
& 0=x\left(x^{2}-6 x+9\right) \\
& 0=\underbrace{x^{\prime}(x-3)^{2}}_{p(x) \text { factored }} \\
& \exp =\left\{\begin{array}{cc}
x=0 & x=3 \\
(0,0) & (3,0) \\
\text { passes } & \left(\begin{array}{l}
\text { exp }=2 \\
\text { through } \\
\text { doesn't cross } \\
\text { docs is }
\end{array}\right. \\
x \text {-axis }
\end{array}\right\} x \text { int } \\
& x \text {-int } \\
& P(0)=0 \\
& (0,0)
\end{aligned}
$$

(3) $\begin{array}{lllll}-1\end{array}$| 1 | -6 | 9 |
| :---: | :---: | :---: |
| -1 | 7 | -16 | $\begin{array}{llll}1 & -7 & 16 & -16\end{array}$

$$
p(-1)=-16
$$

b) $P(x)=-x^{4}+2 x^{3}+3 x^{2}-4 x-4$
(1)

$$
y=-x^{4}
$$

(3)

c) $p(x)=x^{3}-x$
(1) $\sec (a)$

$$
\begin{aligned}
& \text { (2) } 0=x^{3}-x \\
& 0=x\left(x^{2}-1\right) \\
& 0=x^{\prime}(x+1)(x-1)^{\prime} \quad \text { by } l_{s}^{\prime} \\
& x=0,-1,1 \\
& (0,0) \\
& \underbrace{(-1,0)(1,0)}_{\text {also }} \in \underbrace{(x \text { axis }}_{x \text {-int chases }}
\end{aligned}
$$

(3)

x	$p(x)$
2	6
.5	$-0,375$
-2	-6

$$
\begin{aligned}
& p(x)=x^{3}-x \\
& p(-x)=(-x)^{3}-(-x) \\
& =-x^{3}+x
\end{aligned}
$$

 The graph from part (a) is ...

These are the x-intervals for which $P(x)$ is increasing or decreasing $\overbrace{\text { Increasing on }(-\infty, 1) \text { and }(3, \infty)}^{\text {for which }}$ Decreasing on $(1,3)$

Recall:
Function of the form... Transforms the graph of $y=f(x) . .$.

$y=f(x)+k$	up k units
$y=f(x)-k$	down k units
$y=f(x-h)$	right h units
$y=f(x+h)$	left h units
$y=A f(x)$	by a vertical stretch/shrink factor of A
$y=f(B x)$	by a horizontal stretch/shrink factor of $1 / B$
$y=-f(x)$	by a reflection across the x-axis

