Recall: (1) The number c is a zero of $P(x)$ iff $P(c)=0$
(2) The real zeros of $P(x)$ correspond to x-intercepts

Def: The number c is a zero of $\frac{\text { multiplicity }}{\text { is a factor of }} k(x)(x-c)^{k}$
(ex) Find zeros of $P(x)$ and their multiplicities:

$$
\begin{aligned}
& \text { multiplicities: } \\
& P(x)=x^{2}(x-3)^{4}(x+1)^{5}(x-2)
\end{aligned}
$$

$\begin{array}{ccccc}\text { zeros: } 0, & 3, & -1, & 2 \\ \text { mull: } & 2, & 4 & 5,10\end{array}$

The Rational Zero Theorem

$$
\text { If } p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{0}
$$ is a polynomial with integer coefficients, and $\frac{p}{q}$ is a simplified rational zero of $p(x)$, then p is a factor of a_{0} and q is a factor of a_{n}.

(ex) Find the zeros. state multiplicities.

$$
\begin{aligned}
& \text { a) } p(x)=(2) x^{3}+x^{2}-18 x-9 \\
& \left\{\begin{array}{l}
\text { factors of } a_{0}=-9: \pm\{1,3,9\} \\
\text { factors of } a_{n}=a_{3}: 2: \pm\{1,2\}
\end{array}\right.
\end{aligned}
$$

(1) Possible Rational zeros ($P R Z_{s}^{\prime}$):

$$
\pm\left\{1, \frac{1}{2}, \frac{ \pm 3}{3}, \frac{3}{2}, 9, \frac{9}{2}\right\}
$$

(2) Get prime suspects using calculator
(3) verify $4 /$ syn div

zeros are $\pm 3,-\frac{1}{2}$ multiplicities are all 1
Factor $P(x)=2(x+3)(x-3)\left(x+\frac{1}{2}\right)$
b) $\rho(x)=\mid x^{3}-2 x+1$
(1) $\begin{cases}\text { factors of } & a_{0}=1: \pm 1 \\ \text { factors of } & a_{3}=1: \pm 1\end{cases}$

PR $Z_{s}^{\prime}: \pm 1$
(2) \checkmark

(3)(1) 1 | 1 | 0 | -2 | 1 |
| ---: | ---: | ---: | ---: |
| 1 | 1 | -1 | $\angle 0$ |

$$
\begin{aligned}
& \text { Q: } 1 x^{2}+1 x-1=x^{2}+x-1 \\
& x=\frac{-1 \pm \sqrt{1-4(1)(-1)}}{1 x^{2}+1 x-1=0}
\end{aligned}
$$

$$
x=\frac{-1 \pm \sqrt{1-4(1)(-1)}}{2} \quad \frac{-1 \pm \sqrt{5}}{2} \text { zero are } 1, \frac{-\frac{-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2} \text { multiplicity }}{} \quad \text { al' hare }
$$

c) $P(x)=4 x^{4}-4 x^{3}+13 x^{2}-12 x+3$

$$
\begin{aligned}
& \text { factors } 3: \pm\{1,3\} \\
& \prime 4: \pm\{1,2,4,\} \\
& \text { PRC's: } \pm\left\{1, \frac{1}{2}, \frac{1}{4}, 3, \frac{3}{2}, \frac{3}{4}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& 4 x^{2}+12=0 \\
& x^{2}=-3 \\
& x=\underbrace{ \pm \pm \sqrt{3}}_{\text {zeros. }}
\end{aligned}
$$

(ex)

Evaluate the piecewise-defined function for the indicated values.

$$
Q(t)= \begin{cases}4, & \text { if } 0 \leq t \leq 5 \\ -t+7, & \text { if } 5<t \leq 8 \\ \sqrt{t-7}, & \text { if } 8<t \leq 11\end{cases}
$$

(a) $Q(0)=4 x$
(4) $e(x), 6 \times x<1=[-x+7] \times$ since $\quad{ }^{\text {also }} \times 1$ lies between 5 and 8
(c) $Q(n), 1<n<2=4 x$
(m) em ert) $1<m \leq 2=m \times \begin{aligned} & \text { since } \quad 8<m^{2}+7 \leq 11 \text { when } 1<m \leq 2 \\ & \left(\sqrt{\left(m^{2}+7\right)-7}=\sqrt{m^{2}}=m\right)\end{aligned}$

