Def: A rational function is a ratio of two polynomial functions.

$$
\begin{align*}
& R(x)=\frac{P(x)}{Q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x-a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}, Q(x) \neq 0 \\
& \text { (ex) } \quad R(x)=\frac{x^{2}+7 x+2}{x-1} \tag{ex}\\
& R(x)=\frac{3}{2}=\frac{a_{0}}{b_{0}}
\end{align*}
$$

Asymptotes - A line that a graph gets and close to but never quite touches
3 kinds: ${ }^{(1)}$ Vertical, ${ }^{(2)}$ horizontal, (3) slant

(1) Vertical asymptotes (V.A.)

- Can occur where a $R(x)$ is undefined. (when $Q(x)=0$)
- find by setting $D E N=0$ and solve.
(ex) Find $V A^{\prime}$ s.

$$
\begin{aligned}
& R(x)=\frac{x+1}{x^{2}+x-2} \\
& 1 x^{2}+1 x-2=0 \\
& (x-1)(x+2)=0 \\
& x=1 \text { or } x=-2 \text { eqns. of V.A.s }
\end{aligned}
$$

Find V.A.'s
(ex) a) $f(x)=\frac{x}{x^{2}+1}$

$$
\begin{aligned}
& x^{2}+1=0 \\
& \sqrt{x^{2}}= \pm \sqrt{-1} \\
& x= \pm i \rightarrow \text { no V.A.'s (No real } x \text {-values } \\
& \text { that make DEN }=
\end{aligned}
$$

$$
\text { that make } D E N=0 \text {) }
$$

$$
\therefore \quad(x)-x^{2}+7 x+12
$$

b)

$$
\begin{aligned}
& R(x)=\frac{x^{2}+7 x+12}{x+3} \\
& R(x)=\frac{(x+3)(x+4)}{(x+3)} \\
& R(x)=(x+4), \quad x \neq-3
\end{aligned}
$$

$$
\begin{array}{c|c}
x & y
\end{array} \quad(0,4)
$$

(2) Horizontal Asymptotes (HAns)

$$
R(x)=\frac{P(x)}{Q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

Assume $R(x)$ and $P(x)$ and $Q(x)$ have no common factors
HA's sometimes occur when $|x|$ becomes large (ie. $x \rightarrow \infty$ or $x \rightarrow-\infty$)
(1) If $n<m$, then $y=0$ is the H.A.
(2) If $n=m$, then $y=\frac{a_{n}}{b_{n}}$ is the $A . A$.
(3) If $n>m$, there is no H.A.
(ex) Find the $H A^{\prime}$ s.
a) $R(x)=\frac{6 x^{\prime}-2}{2 x^{2}+9 x-5}$

$$
\text { work to show } \quad m=1, \quad m
$$

leading term test $P(x)=6 x-2$ behaves same as $6 x$ for large $|x|$. (LTT) (so as $x \rightarrow \pm \infty$ $P(x) \rightarrow(6 x)$.

$$
\begin{equation*}
n=1, \quad m=2 \tag{x}
\end{equation*}
$$

$$
n<m
$$

So H.A. is $y=0 \quad$ For $~ Q(x)=2 x^{2}+9 x-5$, $Q(x) \rightarrow 2 x^{2}$ for large $|x|$

So, for large $(x), \quad R(x) \rightarrow \frac{6 x}{2 x^{2}}=\frac{3}{x} \rightarrow 0$
so, the H.A. is $y=0$
b)

$$
\begin{aligned}
& f(x)=\frac{2 x^{3}-x+1}{1 x^{3}-1} \\
& n=3=m \\
& y=\frac{2}{1} H A . \\
& y=2
\end{aligned}
$$

(3) Slant Asympotes (S.A)

Also sometimes occur for large $|x|$. Occur when n is exactly I unit larger than m.
(ex) Find S.A.

$$
f(x)=\frac{x^{2}+x-6}{x^{\prime}+2}
$$

$n=2, m=1$; so n is / larger than m, which means there is a S.A.
which means there is a D.A.

Rule: set $y=\binom{$ Quotient that you get when you }{ long divide $O(x)$ into $p(x)}$

$$
\begin{aligned}
& f(x)=\frac{x^{2}+x-6}{x^{2}+2}=x-1-\frac{4 x^{2}}{x+2} \\
& \text { as }|x| \rightarrow \infty
\end{aligned}
$$

So $f(x)$ gets closer to $y=x-1$ as $|x| \rightarrow \infty$
(ex) Graph $\underbrace{f(x)}_{y}=\frac{x^{2}+x-6}{x^{\prime}+2}$
(1) Intercepts

$$
\begin{aligned}
& x \text {-int } \\
& f(0)=\frac{6}{2}=-3 \\
& (0,-3) \\
& 0=\frac{x^{2}+x-6}{x+2} \\
& 0=(x-2)(x+3) \\
& \left(\begin{array}{l}
x-\text { int }
\end{array}\right. \\
& (2,0)(-3,0)
\end{aligned}
$$

(2) Asymptotes
V.A. $f(x)=\frac{(x-2)(x+3)}{x+2}$

$$
\begin{aligned}
& x+2=0 \\
& x=-2 \quad v, A .
\end{aligned}
$$

HA.

$$
\begin{aligned}
& n=2, m=1 \\
& n>m
\end{aligned}
$$

none
S.A. (see last (ex))

$$
y=x-1
$$

(3) check for symmetry
even fut $\rightarrow y$-axis symmetry
odd fats \rightarrow origin symmetry (rotate graph about $(0,0) 180^{\circ}$ it looks the same)
None: $f(-x) \neq f(x)$ not even
(4) Plot points

(ex) $I(x)=\frac{9}{x+4.5}$ gives current (amps)
in a particular circuit, where x is resistance in ohms. Find and interpret the H.A.
(ex) Sketch the graph of $f(x)=\frac{1}{x^{2}-9}$
(1) Intercepts
(2) Asymptote
(3) symmetry
(4) Plot some point

