Section 4.1: Inverse Functions
Wednesday, February 12, 2014
5:11 PM
Goals:

1. To find the inverse of a given function
2. To verify using function composition whether or not two functions are inverses.

Recall:

1. A function is a set of ordered pairs (inputs and outputs) such that no two different ordered pairs have the same first coordinate. A function passes the Vertical Line Test. We usually symbolize y as a function of x by $y=f(x)$.
2. A function is one-to-one if no two different ordered pairs have the same second coordinate. A one-to-one function passes the Horizontal Line Test.
3. The inverse of a function f is obtained by switching the first and second coordinates in all the ordered pairs that comprise f. The inverse of f is denoted by f^{-1}
4. The domain and range of f and f^{-1} are flip-flopped.
5. $f\left[f^{-1}(x)\right]=x=f^{-1}[f(x)]$.
(ex) Is it $\left|t_{0}\right|$?

$$
\text { No, by } H L T \text {. }
$$

(ex) Find the inverse
a) $f=\{(1,2)(3,4)(5,6)\}$

$$
f^{-1}=\{(2,1)(4,3)(6,5)
$$

b) $f(x)=x^{2}+3, \underbrace{x \geq 0}_{\text {verify } f \text { is } 1 \text { to }}$

Note: Domain $[0, \infty)$
Range $[3, \infty)$
(2) Replace $f(x)$ why

$$
y=x^{2}+3
$$

(3) switch x and y

$$
x=y^{2}+3
$$

(4) solve for y

$$
\begin{aligned}
& y^{2}+3=x \\
& \sqrt{y^{2}}= \pm \sqrt{x-3} \\
& y= \pm \sqrt{x-3}
\end{aligned}
$$

take positive root only

$$
y=\sqrt{x-3}
$$

(5) Replace y $w / f^{-1}(x)$

$$
f^{-1}(x)=\sqrt{x-3}, \quad x \geq 3 \quad\left(\frac{\text { Range is } y \geq 0}{\text { Lath }}\right)
$$

why we ditn't take negative root
(ex) $)^{1 e^{x}} f(x)=4-\frac{1}{x}$ and $g(x)=\frac{1}{4-(x)}$.
show f and, g are inverses using function composition.

$$
\left.\begin{array}{rl}
(f \circ g)(x) & =f \cdot[g(x)] \\
& =f\left[\frac{1}{4-x}\right] \\
& =4-\frac{1}{\left(\frac{1}{4-x}\right)} \\
& =g\left[4-\frac{1}{x}\right] \\
& =\frac{1}{4-\left(4-\frac{1}{x}\right)} \\
& =4-1 \cdot \frac{4-x}{1} \\
& =4-(4-x)(x)
\end{array}\right) \begin{aligned}
& =\frac{1}{4-4+\frac{1}{x}} \\
& =x
\end{aligned}
$$

So, f and g are inverses
(ex)

To set f^{-1}, reflect f across $y=x$ (or switch the ordered pairs around in the given points and draw a nice, smooth graph through
those new points)
(ex)
(ex)

(ex) Suppose $f(2)=-5$ and f^{-1} exists. Name a point on f^{-1}.

$$
(-5,2)
$$

