Section 4.1: Inverse Functions

Wednesday, February 12, 2014 5:11 PM

Goals:

- 1. To find the inverse of a given function
- 2. To verify using function composition whether or not two functions are inverses.

Recall:

- 1. A **function** is a set of ordered pairs (inputs and outputs) such that no two different ordered pairs have the same first coordinate. A function passes the **Vertical Line Test**. We usually symbolize y as a function of x by y = f(x).
- 2. A function is **one-to-one** if no two different ordered pairs have the same second coordinate. A one-to-one function passes the **Horizontal Line Test**.
- 3. The **inverse** of a function f is obtained by switching the first and second coordinates in all the ordered pairs that comprise f. The inverse of f is denoted by f⁻¹
- 4. The domain and range of f and f are flip-flopped.

5.
$$f[f'(x)] = x = f''[f(x)]$$
.
(et) Is it Ito[?
No, by HLT.

(ex) Find the inverse
a)
$$f = \{(1, x), (3, 4), (5, 6)\}$$

 $f^{-1} = \{(2, 1), (4, 3), (6, 5)\}$
b) $f(x) = x^{2} + 3$, $x \ge 0$
 $verify \ f \ is \ | \ tol$
 $\frac{1}{3}$
Note: Domain $[0, \infty)$

$$\frac{1}{(2)} \qquad Note: Domain [0, \infty)$$

Range [3, \nu)
(2) Replace $P(x) \quad u/y$
 $y = x^{2} + 3$
(3) switch x and y
 $x = y^{2} + 3$
(4) solve for y
 $y^{2} + 3 = x$
 $\sqrt{y^{2}} = \sqrt{x} - 3$
 $y = \pm \sqrt{x} - 3$
 $take positive root only$
 $y = \sqrt{x} - 3$
(5) Replace $y \quad u/f^{-1}(x)$
 $f^{-1}(x) = \sqrt{x} - 3$
 $f = \sqrt{x} - 3$
(6) Replace $y \quad u/f^{-1}(x)$
 $f^{-1}(x) = \sqrt{x} - 3$
 $f = \sqrt{x} - 3$
(6) Replace $y \quad u/f^{-1}(x)$
 $f^{-1}(x) = \sqrt{x} - 3$
 $f = \sqrt{x}$

.

Show f and g are inverses using
function composition.

$$(fog(x) = f(g(x))] = f(g(x)) = g(f(x)) = g(f(x))$$

$$= f(g(y) = g(f(x)) = g(f(x))$$

$$= g(y) = g(y) = g(f(x))$$

$$= g(y) = g(y) = g(f(x))$$

$$= g(y) = g(y) = g(f(x))$$

$$= g(f(x)) = g(f(x))$$

$$= g(f(x))$$

So, f and g are inverses

reflect f across y=X (or switch the ordered pairs around in the given points and drav a nice, smooth graph through those new points)

(er

