3. To convert between forms
4. To use in apps

3 is the exponent on base 2 that produces

Def: $\quad a^{y}=x$ is equivalent to $y=\log _{a} x$ form form

Note: (1) $f(x)=\log _{a} x$ is a function $\log \mathrm{fetn}^{2}$ (base a) a function exponential fats (base a)
(2) $\left(y=\log _{a} x\right)_{\text {inverses }} y=a^{x}$ are inverses.
(ex) convert to its equivalent form n) -4. -cl

1) $11^{V}=\ldots$

$$
\begin{aligned}
& \text { a) } 3^{4}=81 \\
& 4=\log _{3} 81
\end{aligned}
$$

b)

$$
\begin{aligned}
& u^{v}=w \\
& v=\log _{u} w
\end{aligned}
$$

c)

$$
\begin{aligned}
& v^{x+y}=ud) \quad v \\
&=\log _{8}(w) \\
& x+y=\log _{v}(u) \quad w=8^{v}
\end{aligned}
$$

e)

$$
\begin{aligned}
\log _{10}(x+b) & =c \\
10^{c} & =x+b
\end{aligned}
$$

(ex) Graph $y=\log _{x}(x)$ (inverse of $y=2^{x}$)

$2 y=$ 2	
$1 / 4$	y
$1 / 2$	-1
1	0
2	1
4	2
8	3

$$
\begin{aligned}
& \text { to graph } \xrightarrow{\text { convert }} \text { exp form } \\
& y=\log _{a} x \quad a^{y}=x
\end{aligned}
$$

Notes on $f(x)=\log _{a} x$
(1) Domain: $(0, \infty)$
(2) Range: $(-\infty, \infty)$
(3) $a>0, x>0, a \neq 1$ (restrictions on x, a)
(ex) Graph $f(x)=3 \log _{2}(x-1)-4$ using transformations.

Base fath: $y=\log _{2}(x)$
(1) Vertical stretch factor: $|3|=3$
(2)

$$
\begin{aligned}
& \text { H-shift: }+1 \\
& V \text {-shift: }-4
\end{aligned}
$$

Properties of logs and exponents
(1) $\log _{b}(b)=1 \quad\left(b^{\prime}=b\right)$
(2) $\quad \log _{b} 1=0 \quad\left(b^{0}=1\right)$
(3) $\log _{\left.(b)^{(}\right)}\left(b^{x}\right)=(x) \quad\left(b^{x}=b^{x}\right)$
*(4) $b^{x}=b^{y}$ inf $x=y, \quad b \neq 0,1, b>0$
(ex) solve
a) $\log _{4} x=3$
b) $\left(\log _{4} 8=x\right.$

Convert to \exp form

$$
\begin{aligned}
& x=4^{3} \\
& x=64
\end{aligned}
$$

$$
\begin{aligned}
4^{x} & =8 \\
\left(2^{2}\right)^{x} & =2^{3} \\
2^{(2 x)} & =2^{3} \\
2 x & =3 \\
\text { by }(144) & =\frac{3}{2}
\end{aligned}
$$

check: $4^{\frac{3}{2}} \stackrel{?}{=} 8$

$$
\begin{aligned}
\left(\sqrt[2]{4^{3}}\right) & =(\sqrt{4})^{3} \\
& =2^{3} \\
& =8 v
\end{aligned}
$$

(ex) evaluate without a calculator

$$
\left.\begin{gathered}
\log _{4} 64 \\
\text { let } x=\log _{4} 64 \\
4^{x}=64 \\
4^{x}=4^{3} \\
x_{x}=3
\end{gathered} \right\rvert\, \begin{aligned}
& \text { Another way } \\
& \log _{4} 4^{3}=3 \quad(\text { by } \# 3)
\end{aligned}
$$

$$
x=3
$$

(ex) Find domain

$$
f(x)=\log _{10}\left(\frac{x-3}{x}\right)
$$

set $\frac{x-3}{x}>0$

Find critical values (interval) by setting $N U_{M}=0$ and $D E N=0$ and solving

use test values to determine the intervals of solution.

$$
\frac{x-3}{}>0
$$

$$
\begin{aligned}
T V=-1 & \begin{array}{l}
T V=7 \\
\frac{(-1)}{(-)}
\end{array} \stackrel{T V=4}{>} \\
\frac{(-1}{+}>0 & \text { NHl }
\end{aligned}
$$

D: $(-\infty, 0) \cup(3, \infty)$

Def: (1) $\log x$ means $\log _{10} x$ and is called the common logarithm
(2) $\ln x=\log _{e} x$ is called the natural logarithm, where $e \approx 2,718$

