Goal:

- 1. To evaluate log functions
- 2. Graph
- 3. To convert between forms
- 4. To use in apps

c)
$$V^{x+y} = u$$

$$d) v = log_g(w)$$

e)
$$109(x+b) = C$$

 $10^{c} = x+b$

Graph y = log(x) (inverse of $y = 2^x$)

Notes on f(x)= logat

- (1) Domain: (0,∞)
- (2) Range: $(-\infty, \infty)$
- 3 a>0, x>0, a = 1 (restrictions on x, a)

using transformations.

Properties of logs and exponents

$$(P_0 = 1)$$

$$(6^{\times} = 6^{\times})$$

$$6^{\times} = 6^{\circ}$$
 iff

\$\(\frac{4}{9}\) 6x = 6y iff (x=y), b ≠ 0,1, b>0

(ex) solve

convert to exp form

$$4^{\times} = 8$$
 $(2^{2})^{\times} = 2^{3}$
 $2^{(2^{\times})} = 2^{(3)}$

$$\left(\sqrt[3]{4^3}\right) = \left(\sqrt[3]{4}\right)^3$$
$$= 2^3$$
$$= 8\sqrt{3}$$

(ex) evaluate without a calculator

$$let \times = 109464$$

Another way

 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109464
 109

$$(x=3)$$

(ex) Find domain
$$f(x) = \log_{10} \left(\frac{x-3}{x} \right)$$

set
$$\frac{\times -3}{\times} > 0$$

Find critical values (interval) by setting NUM = 0 and DEN=0 and solving

use test values to determine the intervals of solution.

TV = -1 TV = -1 TV = -1 TV = 4 TV = 4

Def: 10 log x means log10 x and is called the common logarithm

2 Inx = logex is called the natural logarithm, where es 2.718