Section 4.5: Exponential and Logarithmic
Equations
Goal: Let's solve these things.
(ex) solving exponential eqns.
a)

$$
\begin{aligned}
4^{3 x} & =32 \\
\left(2^{2}\right)^{3 x} & =2^{5} \\
2^{6 x} & =2^{5} \\
6 x & =5 \\
x & =\frac{5}{6}
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{2 \cdot 3^{x}}{2} & =\frac{8}{2} \\
3^{x} & =4
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\log \left(3^{x}\right)}=\log (4) \\
& \frac{x \log 3}{\log 3}=\frac{\log 4}{\log 3} \\
& x=\log 4
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log \operatorname{form}}{x=\log _{3} 4} \\
& x=\frac{\log 4}{\log 3}
\end{aligned}
$$

$$
x=\frac{\log 4}{\log 3}
$$

$$
\begin{aligned}
& \text { c) } 9^{7-3 x}=5 \\
& \log 9^{7-3 x}=\log 5 \\
&(7-3 x) \log 9=\log 5 \\
& \frac{7 \log 9-3 x \log 9}{}=\log 5-7 \log 9 \\
& \frac{-3 \times \log 9}{-3 \log 9}=\frac{\log 5-7 \log 9}{-3 \log 9} \\
& x=\frac{\log 5-7 \log 9}{-3 \log 9} \\
& x=\frac{7 \log 9-\log 5}{3 \log 9}
\end{aligned}
$$

d) $5^{x}=3^{x+1}$

$$
\begin{gathered}
\log 5^{x}=\log 3^{x+1} \\
x \log 5=(x+1) \log 3 \\
x \log 5=x+\log 3+\log 3 \\
\frac{-x \log 3-x+\log 3}{x \log 5-x \log 3=\log 3} \\
\frac{x \cdot(\log 5-\log 3)}{}=\frac{\log 3}{\log 5-\log 3} \\
x=\frac{\log 3}{\log 5-\log 3} \\
x z 2.15
\end{gathered}
$$

Steps
(1) isolate exp. fate if necessary
(2) If possible, write both sides w/ same base, set exponents equal and solve
(3) If (2) fails, take log (or In) of both sides, apply power rule, and solve.
(ex) non-routine equation

$$
\begin{gathered}
\frac{e^{x}-e^{-x}}{2}=15 \\
e^{e^{x}-e^{-x}}=30 \\
\left(e^{x}-\frac{1}{e^{x}}\right)=e^{x} 30 \\
\left(e^{x}\right)^{2}-1=30 e^{x} \\
\left.1\left(e^{x}\right)^{2}-30 e^{x}-1=0\right\} \begin{array}{c}
\text { Think quadratic } \\
a=1, b=-30, c=-1 \\
e^{x} \\
x \quad 30 \pm \sqrt{900-4(1)(-1)}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
e^{x} & =\frac{30 \pm \sqrt{900-4(1)(-1)}}{2} \\
e^{x} & =\frac{30 \pm \sqrt{904}}{2} \quad \begin{array}{l}
\text { cant be negative } \\
\text { (so throw out minus) }
\end{array} \\
\ln e^{x} & =\ln \left(\frac{30+\sqrt{904}}{2}\right) \\
x & =\ln \left(\frac{30+\sqrt{904}}{2}\right) \\
& =\ln \left(\frac{30+2 \sqrt{226}}{2}\right) \\
x & =\ln (15+\sqrt{226})
\end{aligned}
$$

(ex) Logarithmic Equations
(1) I to l property on logarithms

$$
\log _{a} x=\log _{a} y \quad \text { inf } x=y
$$

* 2 Def of \log

$$
x=a^{y} \text { inf } y=\log _{a} x
$$

(ex) solve
a)

$$
\begin{aligned}
& \log _{3} x=4 \\
& x=3^{4} \\
& x=81
\end{aligned}
$$

c)

$$
\begin{gathered}
\frac{4 \log _{x} x}{4}=\frac{8}{4} \\
\log _{10} x=2 \\
x=10^{2} \\
x=100
\end{gathered}
$$

b)

$$
\begin{aligned}
& \log _{4}(x-3)=\log _{4} 5 \\
& x-3=5 \\
& x=8
\end{aligned}
$$

d)

$$
\begin{gathered}
\log _{10}[(x-9) x]=1 \\
(x-9) x=10^{1} \\
x^{2}-9 x=10 \\
x^{2}-9 x-10=0
\end{gathered}
$$

$$
\begin{align*}
& (x-10)(x+1)=0 \\
& x=10 \text { or } x>1
\end{align*}
$$

e)

$$
\begin{gathered}
\log _{6}(x+3)-\log _{6}(x+2)=\log _{6} 20 \\
\log _{6}\left(\frac{x+3}{x+2}\right)=\log _{6} 20 \\
\frac{x+3}{x+2}>-\frac{20}{1} \\
20 x+40=x+3 \\
19 x=-37 \\
x=-\frac{37}{19}
\end{gathered}
$$

Solving log equations
case (1) Get a single log on one side then or convert to exp. form and solve ~ . . 1 a single log on both sides
case (2) vet.
then set the arguments of logs equa. (drop the logarithms) and solve

