Section 5.4: Radian Angle Measure and Trigonometric functions of Real Numbers
Monday, August 25, 2014
11:26 AM
Goals:

1. To convert between radian and degrees.
2. To compute arc length of a sector of a circle
3. To solve apps.
4. To evaluate a trig function of any real number.

Radian Measure

$\}$ we say the arc from A to B subtends the central angle, θ

Radian measure of θ is given by $\theta=\frac{S}{r}$.
Notes:(1) An angle that measures 1 radian is subtended ${ }^{\text {by }}$ an arc length of 1 radius.
A $\#$ of radians in 1 revolution is
*
given by $\theta=\frac{s}{r}=\frac{2 \pi r}{r}=2 \pi$.
So, $360^{\circ}=2 \pi$ radians or
\$ $180^{\circ}=\pi$ radians
(3) $s=r \theta<$ arc length formula
(ex) convert to radians or degrees.
a)

$$
-270^{\circ} \cdot \frac{\pi}{180}=\frac{-27 \pi}{18}=-\frac{3 \pi}{2}
$$

b)

$$
\begin{aligned}
& 427^{\circ} \quad \text { (approximate) } \\
& 427^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{427 \pi}{180} \approx 7.45 \\
& \text { estimate }
\end{aligned}
$$

c) $\frac{9 \pi}{2}$ (Assume to be radians when

- no units given)

$$
\frac{9 \pi}{2} \cdot \frac{180^{\circ}}{\pi}=810^{\circ}
$$

(ex) Find the complement of $\frac{\pi}{3}$
complement: $\frac{\pi}{2}-\frac{\pi}{3}=\frac{3 \pi}{6}-\frac{2 \pi}{6}=\frac{\pi}{6}$
supplement: $\pi-\frac{\pi}{3}=\frac{3 \pi}{3}-\frac{\pi}{3}=\frac{2 \pi}{3}$

Def: Angular Velocity (change in θ over time)

$$
\binom{\text { angular }}{\text { velocity }}=\sum_{\text {"omega" }} w=\frac{\theta}{t}
$$

Ex. A wheel is rotating at 200 rpm . Find the angular velocity in radians per second.

$$
\begin{aligned}
& \frac{200 \text { rev }}{1 \min } \cdot \frac{2 \pi \text { radians }}{1 \text { net }} \cdot \frac{1 \text { min }}{60 \mathrm{sec}} \\
& \approx 20.94 \frac{\text { radians }}{\mathrm{sec}}
\end{aligned}
$$

Ex. A truck has a tire of radius 45 cm rotating at 500 rpm . Find the speed of the truck.

$$
\begin{aligned}
& \frac{500 \mathrm{rer}}{1 \mathrm{~min}} \cdot \frac{2 \pi(45) \mathrm{cm}}{1 \mathrm{peV}} \cdot \frac{1 \mathrm{~km}}{100000 \mathrm{~cm}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \\
& \neq 84.8 \frac{\mathrm{~km}}{\mathrm{hr}}
\end{aligned}
$$

