Section 7.1: The Law of Sines
Tuesday, March 25, 2014
1233 P PM
12:33 PM

$$
\tan \theta=\frac{30}{60}=\frac{1}{2}
$$

$$
\tan \theta=\frac{1}{2}
$$

$$
\theta \approx 26.6^{\circ}
$$

Goal: To solve triangles using the Law of Sines

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Notes on congruent Δk

congruent by ASA o her congruent properties: SS SS

$$
\begin{aligned}
& \text { PAS } \\
& S S A \text { ambignons } \\
& A A S
\end{aligned}
$$

(et) Solve the triangle (AAS)

$$
\begin{aligned}
& A=135^{\circ} \\
& B=30^{\circ} \\
& b=20
\end{aligned}
$$

$$
\begin{gathered}
\frac{a}{\sin 135^{\circ}}=\frac{20}{\sin 30^{\circ}} \\
a=20 \sin 135^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& a=\frac{20 \cdot \frac{\sqrt{2}}{2}}{\frac{\sin 30^{\circ}}{2}}=20 \frac{\sqrt{2}}{2} \cdot 2=20 \sqrt{2} \text { units } \\
& C=180^{\circ}-30^{\circ}-135^{\circ}=15^{\circ} \\
& \frac{c}{\sin 15^{\circ}}=\frac{20}{\sin 30^{\circ}} \\
& c=\frac{20 \sin 15^{\circ}}{\sin 30^{\circ}} \approx 10.35 \text { units }
\end{aligned}
$$

b) $a=12, b=31, A=20.5^{\circ}$

$$
\begin{aligned}
& 12 \sin B=31 \sin 20.5^{\circ} \\
& \sin B=\frac{31 \sin 20.5^{\circ}}{12} \approx .9 \\
& B=\sin ^{-1}\left(\frac{31 \sin 20.5^{\circ}}{12}\right)
\end{aligned}
$$

Direction Specification

Heading: The angular direction in which a craft is pointed. Heading is expressed in terms of an angle measured clockwise from the north.

Bearing: Used to locate one object in relation to another object. It is expressed in terms of the acute angle formed by a north-south line of direction.

$$
\text { object } 2 \text { is } S 30^{\circ} \mathrm{E}
$$

of object 1 .
Distance to a Lighthouse A navigator on a ship sights a lighthouse at a bearing of $\mathrm{N} 36^{\circ} \mathrm{E}$. After traveling 8.0 miles at a heading of 332°, the ship sights the lighthouse at a bearing of $\mathrm{S} 82^{\circ} \mathrm{E}$. How far is the ship from the lighthouse at the secod sighting?

of sines to find a

$$
\begin{aligned}
& \frac{a}{\sin 64^{\circ}}=\frac{8}{\sin 62^{\circ}} \\
& \approx 8 \sin 64^{\circ} \\
& 8.1 \text { miles }
\end{aligned}
$$

$$
a=\frac{8 \sin 64^{\circ}}{\sin 62^{\circ}} \approx 8.1 \text { miles }
$$

