Section 7.4 Part II: Trigonometric Form of Complex Numbers
Thursday, April 10, 2014
1:01 PM
Goal:

1. To plot a complex number in the complex plane.
2. To convert between standard form and trig form.
3. To multiply and divide complex numbers in trig form.
(et) consider $z=-2+3 i$. plot z in complex plane

Def of $|z|$

$$
\text { Then r} "|z|=\sqrt{a^{2}+b^{2}}
$$

$$
\tan \theta=\frac{b}{a}
$$

Trig form of $z=a+b i$

$$
z=a+b i=\underbrace{r \cos \theta}+i \underbrace{r \sin \theta}
$$

θ is the direction angle of z measured from positive real! axis.
(ex) convert to trig form
a) $z=\sqrt{3}-1 i$

$$
\begin{aligned}
|z|=r & =\sqrt{3+1}=\sqrt{4}=2 \\
\tan \theta & =-\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\left(-\frac{\sqrt{3}}{3}\right. \\
\alpha & =30^{\circ} \\
\theta & =330^{\circ} \\
z & =r(\cos \theta+i \sin \theta) \\
& \downarrow \\
& 2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\cos 330^{\circ}+l \sin 330^{\circ}\right) \\
& =2 \operatorname{cis} 330^{\circ}
\end{aligned}
$$

b) $z=-5$

$$
\begin{aligned}
& r=|-5|=5 \\
& \theta=180^{\circ}
\end{aligned} \left\lvert\, \begin{aligned}
& z=r \operatorname{cis} \theta \\
& z=5 \operatorname{cis} 180^{\circ}
\end{aligned}\right.
$$

Product of Two complex $\#^{\prime}$'s

$$
\begin{aligned}
z_{1} & =r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \\
z_{2} & =r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
z_{1} z_{2} & =r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& =r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Proof:

$$
z_{1} z_{2}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)
$$

$$
\left.\begin{array}{rl}
& =r_{1} r_{2}(\underbrace{\left.\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)}_{(-1)} \\
& =r_{1} r_{2}\left[\cos \theta_{1} \cos \theta_{2}+i \sin \theta_{2} \cos \theta_{1}+i \sin \theta_{1} \cos \theta_{2}+i^{2} \sin \theta_{1} \sin \theta_{2}\right.
\end{array}\right] \quad=\underbrace{\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}}_{\cos \left(\theta_{1}+\theta_{2}\right)}+i(\underbrace{\left.\sin \theta_{1} \cos \theta_{2}+\sin \theta_{2} \cos \theta_{1}\right)}_{\sin \left(\theta_{1}+\theta_{2}\right)}]] .
$$

\# Done
(ex) multiply

$$
\begin{aligned}
& \text { a) }\left(2 \operatorname{cis} 30^{\circ}\right)\left(3 \operatorname{cis} 225^{\circ}\right) \\
& =2 \cdot 3 \operatorname{cis}\left(30^{\circ}+225^{\circ}\right) \\
& =6 \operatorname{cis}\left(255^{\circ}\right)
\end{aligned}
$$

b) $5\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right) \cdot 2\left(\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}\right)$

$$
\frac{2 \pi}{3}+\frac{2 \pi}{5}=\frac{10 \pi}{15}+\frac{6 \pi}{15}=\frac{16 \pi}{15}
$$

$$
=10 \operatorname{cis}\left(\frac{6 \pi}{15}\right)
$$

Division

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{r_{1}\left(\operatorname{cis} \theta_{1}\right)}{r_{2}\left(\operatorname{cis} \theta_{2}\right)} \\
& =\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

ex

$$
\begin{aligned}
& \frac{32 \operatorname{cis} 30^{\circ}}{4 \operatorname{cis} 150^{\circ}} \\
= & 8 \operatorname{cis}\left(30-150^{\circ}\right) \\
= & 8 \operatorname{cis}\left(-120^{\circ}\right) \\
= & 8 \operatorname{cis}\left(240^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& =r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& z^{\prime}=r \operatorname{cis} \theta \\
& z^{2 \ell}=\left(r r \operatorname{cis}(\theta+\theta)=r^{2} \operatorname{cis} 2 \theta\right. \\
& z^{(3)}=r^{2} \operatorname{cis}(2 \theta)(r) \operatorname{cis}(\theta)=r^{3} \operatorname{cis}(3 \theta)
\end{aligned}
$$

$z^{n}=r^{n} \operatorname{cis}(n \theta)$ Power
Demoivere's Theorem for powers
(ex) Evaluate $(1+\sqrt{3} i)^{8}$

$$
\begin{aligned}
z & =1+\sqrt{3} i \\
r & =\sqrt{1+3}=\sqrt{4}=2 \\
\tan \theta & =\frac{\sqrt{3}}{1} \rightarrow \theta=60^{\circ} \\
z & =2 \operatorname{cis} 60^{\circ}, \quad n=8
\end{aligned}
$$

$$
\begin{aligned}
\left(2 \operatorname{cis} 60^{\circ}\right)^{8} & =2^{8} \operatorname{cis}\left(8 \cdot 60^{\circ}\right) \\
& =256 \text { cis } 480^{\circ} \\
& =256 \text { cis } 120^{\circ}
\end{aligned}
$$

$$
256\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)
$$

$$
256\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)
$$

$$
-128+i 128 \sqrt{3}
$$

Loose End

$$
\operatorname{cis} \theta=\cos \theta+i \sin \theta
$$

Turns out $\operatorname{cis} \theta=e^{i \theta}$, where $e \approx 2.718$

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \\
& e^{i \pi}=\cos \pi+i \sin \pi \\
& \\
& e^{\pi i}=-1+i 0 \\
& e^{(\pi i}+1=0 \quad \text { Euler's } \\
& \pi=\frac{c}{d} \\
& i=\sqrt{-1} \\
& e \approx 2.718
\end{aligned}
$$

$1=$ multiplicative id.
$O=$ additive identity.

