Section 9.1, 9.3: Solving Systems of Two
Equations, Two Unknowns
Wednesday, March 26, 2014
6:08 PM
Goals:

1. To solve a linear system of two equations, two unknowns (6.1)
2. To solve a non-linear system of two equations, two unknowns (6.3).
3.

(ex solve using substitution

$$
\begin{gathered}
\text { a) }\left\{\begin{array}{l}
-3 x+7 y=14 \\
2 x-y=-13 \\
y=2 x+13
\end{array}\right. \\
-3 x+7(2 x+13)=14 \\
-3 x+14 x+91=14 \\
11 x=-77
\end{gathered}
$$

b) Same system, use elimination to solve

$$
\begin{gathered}
y=-1 \\
(-7,-1)
\end{gathered}
$$

c) solve

$$
\left.\begin{array}{l}
y=(2 x-7) \\
4 x-2 y=14
\end{array}\right\} \begin{aligned}
& \text { lines } \\
& \text { coincide } \\
& \text { (every point on the } \\
& \text { line is a solution } \\
& 4 x-2(2 x-7)=14 \quad \begin{array}{l}
\text { to system) }
\end{array} \\
& 4 x-4 x+14=14 \quad \\
& 14=14 \quad \text { True } \rightarrow \text { Dependent system }
\end{aligned}
$$

How to write the solutions for Dependent System

Setbuilder
notation $\{(x, y) \mid y=2 x-7\}$
$\underset{\text { pair }}{\underset{\text { parer }}{\operatorname{ord}}(\stackrel{c}{d}, 2 x-7) \rightarrow(c, 2 c-7)}$

3 situations
(1)
(2)

X False statement

U

system is consistent and independent
\leftrightarrow

- parallel lines
- no solution
inconsistent system
(3)

Lines over lap.
Every ordered pair is a solution.
system is consistent
and dependent L_{1} at least I solution
9.3 Equations are not necessarily linear. (solutions are still intersection points).
(ex) solve

$$
\begin{aligned}
& x-1=x^{2}+2 x-3 \\
& 0=1 x^{2}+1 x-2 \\
& 0=(x+2)(x-1) \\
& x=(-2)
\end{aligned}
$$

$$
\begin{gathered}
y=-2-1 \quad y=0 \\
y=-3
\end{gathered}
$$

b)

c)

$$
\begin{aligned}
& (x+2)^{2}+((6-2 x)-2)^{2}=13 \\
& (x+2)^{2}+(4-2 x)^{2}=13 \\
& x^{2}+4 / x+4+16-16 x+4 x^{2}=13 \\
& 5 x^{2}-12 x+20=13 \\
& 5 x^{2}-12 x+7=0 \\
& (5 x-7)(x-1)=0 \\
& 5 x-7=0 \text { or } x-1=0 \\
& x=\left(\frac{7}{5} \text { or } x=1\right. \\
& y=6-2\left(\frac{7}{5}\right) \quad y=6-2 \\
& y=6-\frac{14}{5} \\
& =\frac{30}{5}-\frac{14}{5} \\
& =\frac{16}{5} \\
& \left(\frac{7}{5}, \frac{16}{5}\right) \text { or }(1,4)
\end{aligned}
$$

absolute value

$$
\int a, \quad a \geq 0
$$

\longleftarrow called a piece-wise defined function

$$
\underbrace{|a|=\left\{\begin{array}{cc}
a, & a \geq 0 \\
-a, & a<0
\end{array}\right\}}_{\text {Def }} \text { defined function }
$$

(ex) Represent the distance between x and 10 using abs. value.

$$
|x-10| \text { same as }(10-x \mid)
$$

