Trig Functions of Real Numbers

Goals: To evaluate a trig function of any real number.

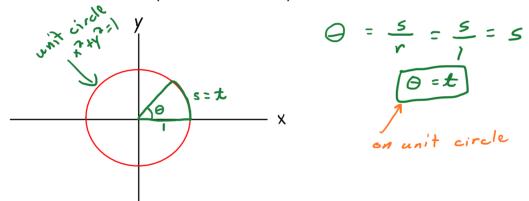
Notes: Applications of periodic functions include...

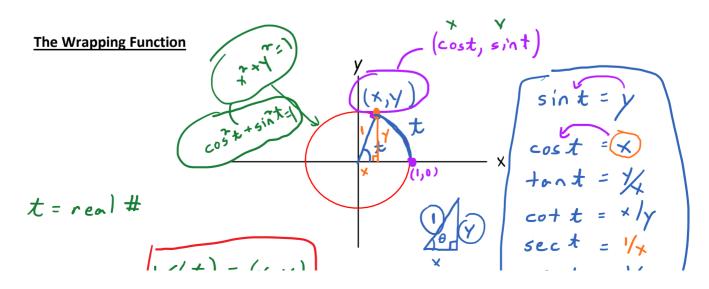
- 1. Spring vibrations
- 2. Tides (water depth at a location)
- 3. Outside temperature throughout the day
- 4. AC current

Big Idea: We can use trigonometric functions of real numbers to model repetitive phenomena.

Notes:

- 1. Recall radian angle measure: $\theta = s/r$
- 2. So, on the unit circle $\theta = s$ (or t in this section).





Wrapping Function:
$$w(t) = (x, y)$$

a point on the unit circle

Example: Find...

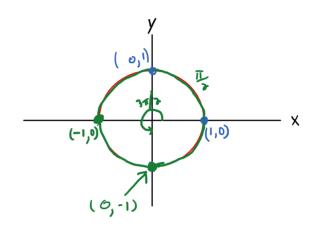
$$W(0) = (1,0)$$

$$W(\frac{\pi}{2}) = (0,1)$$

$$W(\pi) = (-1,0)$$

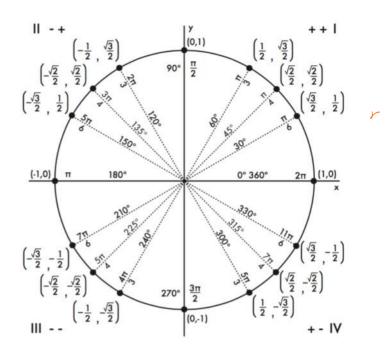
$$W(\frac{3\pi}{2}) = (0,-1)$$

$$W(2\pi) = (1,0)$$



Example: Find $w(4\pi/3)$.

Note:
$$w(t) = \frac{(\cos t, \sin t)}{(\cos t, \sin t)}$$



Definition: The **trigonometric functions** of a real number, t. Let w(t) = (x, y), where (x, y) is on the unit circle. Then...

$$sint = y$$

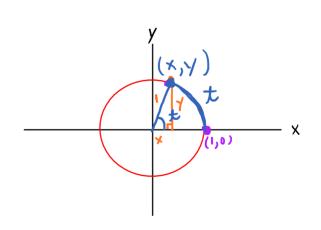
$$cost = x$$

$$tant = \frac{x}{y}$$

$$cott = \frac{x}{y}$$

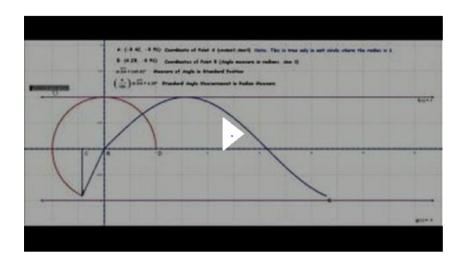
$$sect = \frac{1}{y}$$

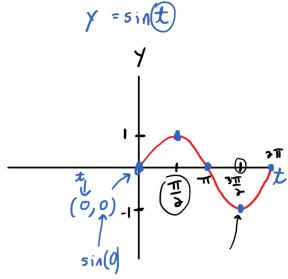
$$csct = \frac{1}{y}$$



Unit Circle and Sine Wave

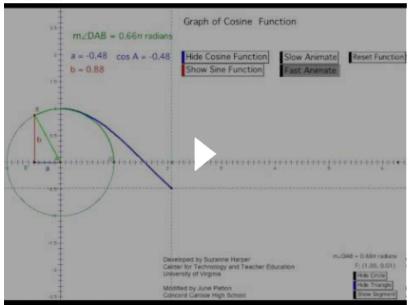
MrLovellFord

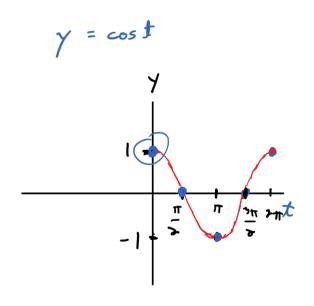




Cosine Function from Unit Circle

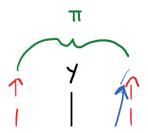
June Patton

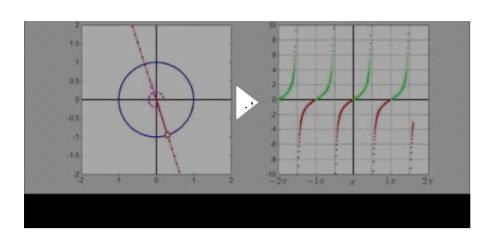


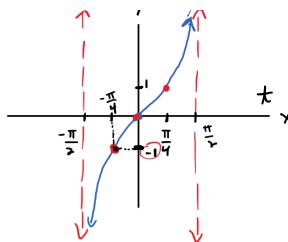


What does the Tangent graph look like?

Jonathan Mitchell





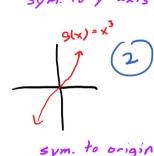


Even/odd Functions

let
$$y = f(x)$$

$$f(x) = x^{2}$$

$$f(x)$$



(2)
$$f(-x) = (-f(x))^{f/s} \text{ odd}$$

Is f(x) even, odd,

(ex)
$$f(x) = x^2$$

 $f(-x) = (-x)^2$
 $= x^2$
 $= f(x)$

so f is even

(x) Is f(x) even, odd, or neither?

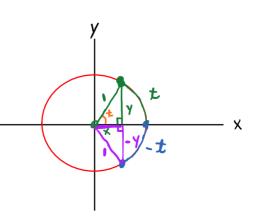
$$g(x) = x^{3}$$

 $g(-x) = (-x)^{3} = -x^{3} = -g(x)$ 50 9

509 is odd.

Note: $\cos t$ and $\sec t$ are <u>even</u>. The rest are <u>odd</u>.

$$sin(-t) = - sint$$



Example: Is it even, odd, or neither? Note that x is the input here.

$$f(x) = \frac{\cos x}{x}$$

$$f(-x) = \frac{\cos x}{(-x)}$$

$$= \frac{\cos x}{-x}$$

$$= -f(x) = so f is odd$$

Notes: Let y = f(t).

- 1. A function is **periodic** if there is a smallest number p such that f(t+p) = f(t)
- 2. The period of sine, cosine, secant, and cosecant is $\frac{360^\circ}{2\pi}$. $\sin(370^\circ) = \sin(10^\circ)$
- 3. The period of tangent and cotangent is $\frac{780^{\circ}}{500} = \frac{7}{100}$. $\sin(10^{\circ} + 360^{\circ}) = \sin(10^{\circ})$

Fundamental Identities

Reciprocal: Sint =
$$\frac{1}{\csc t}$$
, $\cos t = \frac{1}{\sec t}$, $\tan t = \frac{1}{\cot t}$

Ratio: $t - \cot t = \frac{\sin t}{\cos t}$, $\cot t = \frac{\cos t}{\sin t}$

Pythagorean: $\cos^2 t + \sin^2 t = 1$ $1 + \tan^2 t = \sec^2 t$
 $\sin^2 t = 1 - \cos^2 t + \cot^2 t = \csc^2 t$

Pythagorean;
$$\cos t + \sin t = 1 + \cot^2 t = \csc^2 t$$

$$\sin^2 t = 1 - \cos^2 t + \cot^2 t = \csc^2 t$$

Example: Write as a single trigonometric function: $\frac{1 - \sin^2 x}{1 + 3 + 3}$

Example: Write as a single trigonometric function:
$$\frac{1 - \sin^2 t}{\cos^2 t}$$

$$= \frac{\cos^2 t}{\cos^2 t}$$

$$= \frac{\cos^2 t}{\cos^2 t}$$

$$= \frac{\cos^2 t}{\cos^2 t}$$

$$= \frac{\cos^2 t}{\cos^2 t}$$