Trig Functions of Real Numbers

Goals: To evaluate a trig function of any real number.

Notes: Applications of periodic functions include...

1. Spring vibrations
2. Tides (water depth at a location)
3. Outside temperature throughout the day
4. AC current

Big Idea: We can use trigonometric functions of real numbers to model repetitive phenomena.

Notes:

1. Recall radian angle measure: $\theta=s / r$.
2. So, on the unit circle $\theta=s$ (or t in this section).

$$
\begin{gathered}
\theta=\frac{s}{r}=\frac{s}{1}=s \\
\theta=t \\
\text { on unit circle }
\end{gathered}
$$

Example: Find...

$$
\begin{aligned}
& w(0)=(1,0) \\
& w\left(\frac{\pi}{2}\right)=(0,1) \\
& w(\pi)=(-1,0) \\
& w\left(\frac{3 \pi}{2}\right)=(0,-1) \\
& w(2 \pi)=(1,0)
\end{aligned}
$$

Example: Find $w(4 \pi / 3)$.

$$
\begin{aligned}
& w\left(\frac{4 \pi}{3}\right)=\left(\cos \frac{4 \pi}{3}, \sin \frac{4 \pi}{3}\right) \alpha=\frac{4 \pi}{3}-\frac{3 \pi}{3} \\
&=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

Note: $w(t)=\left(\begin{array}{cc}x & y \\ \cos t, \sin t)\end{array}\right.$

Definition: The trigonometric functions of a real number, t. Let $w(t)=(x, y)$, where (x, y) is on the unit circle. Then...

$$
\begin{aligned}
& \sin t=y \\
& \cos t=x \\
& \tan t=y / 4 \\
& \cot t=x / y \\
& \sec t=1 / x \\
& \csc t=1 / y
\end{aligned}
$$

Unit Circle and Sine Wave
MrLovellFord

Cosine Function from Unit Circle

June Patton

$y=\cos t$

What does the Tangent graph look like?
Jonathan Mitchell

Even/odd Functions $1 e+\quad y=f(x)$

(1)

sym. to γ-axis

Is $f(x)$ even, odd, on neither?
(ex) $f(x)=x^{2}$

$$
\begin{aligned}
f(-x) & =(-x)^{2} \\
& =x^{2} \\
& =f(x)
\end{aligned}
$$

so f is even
ex Is $f(x)$ even, odd, or neither?

$$
\begin{aligned}
& g(x)=x^{3} \\
& g(-x)=(-x)^{3}=-x^{3}=-g(x) \text { So g }
\end{aligned}
$$ is odd.

Note: $\cos t$ and $\sec t$ are \qquad even . The rest are \qquad odd .

$$
\begin{aligned}
& \cos t=x \\
& \cos (-t)=x
\end{aligned}
$$

So $\cos t=\cos (-t)$
Which means cosine is an even fate.

Example: Is it even, odd, or neither? Note that x is the input here.

$$
\begin{aligned}
& f(x)=\frac{\cos x}{x} \\
&=\frac{\cos x}{-x} \\
&=\frac{\cos (-x)}{(-x)} \\
&=-\frac{\cos x}{x} \\
&=-f(x) \text { so } f \text { is odd. }
\end{aligned}
$$

Notes: Let $y=f(t)$.

1. A function is periodic if there is a smallest number p such that $f(t+p)=f(t)$
2. The period of sine, cosine, secant, and cosecant is $360^{\circ}=2 \pi . \quad \sin \left(370^{\circ}\right)=\sin \left(10^{\circ}\right)$

$$
\text { 3. The period of tangent and cotangent is }=\pi \quad \sin \left(10^{\circ}+360^{\circ}\right)=\sin \left(10^{\circ}\right)
$$

Fundamental Identities

$$
\text { Reciprocal: } \sin t=\frac{1}{\csc t}, \cos t=\frac{1}{\sec t}, \tan t=\frac{1}{\cot t}
$$

$$
\text { Ratio: } \tan t=\frac{\sin t}{\cos t}, \cot t=\frac{\cos t}{\sin t}
$$

Pythagorean: $\cos ^{2} t+\sin ^{2} t=1 \quad 1+\tan ^{2} t=\sec ^{2} t$

$$
\left[\begin{array}{l}
\sin ^{2} t=1-\cos ^{2} t 1+\cot ^{2} t=\csc ^{2} t \\
\cos ^{2} t=1-\sin ^{2} t
\end{array}\right.
$$

Example: Write as a single trigonometric function: $\frac{1-\sin ^{2} t}{-1+2 t}$

$$
\sin ^{2} t=(\sin t)^{2}
$$

Example: Write as a single trigonometric function: $\frac{1-\sin ^{2} t}{\cot ^{2} t}$

$$
\begin{aligned}
& \sin ^{2} t=(\sin t)^{2} \\
& \sin (t)^{2}
\end{aligned}
$$

