

Mean Value Theorem
for Integrals (MVTI)

(ex Let $f(x)=4-x^{2}$
a) fave
b) Find c such that fare $=f(c)$
c) sketch f and rectangle whose area is the same as $\int_{a}^{b} f(x) d x$ where $a=0, b=2$.
a) $f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

$$
\begin{aligned}
& \int_{0}^{2}\left(4-x^{2}\right) d x \\
= & {\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2} } \\
= & \left(8-\frac{8}{3}-0\right. \\
f_{\text {ave }}= & \frac{1}{2} \cdot \frac{16}{3}=8
\end{aligned}
$$

b)
b)

$$
\begin{aligned}
f(c)= & 4-c^{2} \\
& 4-c^{2}=\frac{8}{3} \\
& -c^{2}=\frac{8}{3}-4 \\
& -c^{2}=-\frac{4}{3} \\
& \sqrt{c^{2}}=\sqrt{\frac{4}{3}} \quad\left(a=0, b=2 \text { and }-\frac{2}{\sqrt{3}} \notin[0,2]\right)
\end{aligned}
$$

$$
c=t \frac{2}{\sqrt{3}}
$$

c) $\quad f(x)=4-x^{2}$

$$
\begin{aligned}
f\left(\frac{2}{\sqrt{3}}\right) & =4-\left(\frac{2}{\sqrt{3}}\right)^{2} \\
& =4-\frac{4}{3}
\end{aligned}
$$

$$
=\frac{8}{3} \left\lvert\, \frac{2}{\sqrt{3}} \approx 1.15\right.
$$

