Guidelines for Integration

1. Memorize the basic formulas through \#18 (see p. 503)

Table of Integration Formulas Constants of integration have been omitted.

1. $\int x^{n} d x=\frac{x^{n+1}}{n+1} \quad(n \neq-1) \quad$ 2. $\int \frac{1}{x} d x=\ln |x|$
2. $\int e^{x} d x=e^{x}$
3. $\int b^{x} d x=\frac{b^{x}}{\ln b}$
4. $\int \sin x d x=-\cos x$
5. $\int \cos x d x=\sin x$
6. $\int \sec ^{2} x d x=\tan x$
7. $\int \csc ^{2} x d x=-\cot x$
8. $\int \sec x \tan x d x=\sec x$
9. $\int \csc x \cot x d x=-\csc x$
10. $\int \sec x d x=\ln |\sec x+\tan x|$
11. $\int \csc x d x=\ln |\csc x-\cot x|$
12. $\int \tan x d x=\ln |\sec x|$
13. $\int \cot x d x=\ln |\sin x|$
14. $\int \sinh x d x=\cosh x$
15. $\int \cosh x d x=\sinh x$
16. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
17. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right), \quad a>0$
*19. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|$
*20. $\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|$
18. Simplify integrand: multiply out, and/or use a trig identity, and/or some other algebraic manipulation.
19. Try u-substitution (look for a perfect du).
20. Look at the form of the integrand. If you see...
a. ...a product of polynomial and transcendental functions, try I.B.P.
b. ...a product of trig functions, use substitution tricks from section 7.2.
c. ...a radical, try trig sub (or maybe u-sub).
d. ...a rational integrand, try P.F.D.
21. Try again. If u-sub or (I.B.P.) didn't work the first time, try again setting u equal to some other quantity.

Section 7.5 Guidelines for Integration Page 2

