Section 13.3: Arc Length and Curvature

Tuesday, february 3,2015 S:18 PM

Goals:

1. To find the arc length of a curve
2. To calculate an arc length parametrization of C .
3. To calculate K .

$$
\text { Convention: } C \text { is a smooth curve given by } \vec{r}(t):\langle x(t), y(t), z(t)]
$$

Theorem: Arc Length, s, of $C \quad \overbrace{\text { from } t=a}^{a+\text { raced ont once } t=b}$...

$$
s=s=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t
$$

Intuitive Justification:

$(d s)^{2}=(d x)^{2}+(d y)^{2}$
$d s=\sqrt{(d x)^{2}+(d y)^{2}} \cdot \frac{d t}{d t}$
$d s \approx \underbrace{\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t}\}$

$$
\begin{aligned}
& \text { Form a Riemann } \\
& \text { sum invelving the lengths of } \\
& \text { all such sub-ares, take }
\end{aligned}
$$

$$
\begin{array}{ll}
\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \quad & \text { limit as the number of } \\
& \text { sub-ares }
\end{array}
$$

$$
\left\|\vec{r}^{\prime}(t)\right\| d t
$$

$$
\operatorname{sub-arcs} \Rightarrow \infty \text { to get }
$$

$$
s=\int_{a}^{b}\left\|r^{\prime}(t)\right\| d t
$$

(ex) Find the arc length of

$$
\begin{aligned}
& \vec{r}(t)=\langle 3 t,-2 \sin t, 2 \cos t\rangle \text { from } t=0 \text { to } t=\left(\frac{\pi}{2}\right) . \\
& s=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t
\end{aligned}
$$

$$
\begin{aligned}
& s=\int_{a}^{b}\left\|\vec{r}^{\prime}(t)\right\| d t \\
& \vec{r}^{\prime}(t)=\langle 3,-2 \cos t,-2 \sin t\rangle \\
&\left\|\vec{r}^{\prime}(t)\right\|=\sqrt{9+4 \cos ^{2} t+4 \sin ^{2} t} \\
&=\sqrt{9+4(\underbrace{\left.\cos ^{2} t+\sin ^{2} t\right)}_{0}} \\
&=\underbrace{13}_{0} \\
& s=\int_{0}^{\frac{\pi}{2}} \sqrt{13} d t \\
&=\sqrt{13} \int_{0}^{\frac{\pi}{2}} 1 d t \\
&=\sqrt{13}[t]_{0}^{\frac{\pi}{2}} \\
&=\sqrt{13}\left(\frac{\pi}{r}-0\right) \\
&=\frac{\pi \sqrt{13}}{2}
\end{aligned}
$$

Def: Arc Length Function

$$
s(t)=\int_{a}^{t}\left\|\vec{r}^{\prime}(u)\right\| d u
$$

Notes
(1) $s(t)$ meaures distance along 4 from

$$
\vec{r}(a)=\langle x(a), y(a), z(a)\rangle \text { to } \vec{r}(t)=\langle x(t), y(x), z(t)\rangle
$$

(2) s (from $s(t)$) is called the arc length
parameter
(3) $\frac{d s}{d t}=\left\|\vec{r}^{\prime}(x)\right\|$
(ex) Find an are length parametrization of $\vec{r}(t)=(3+2 t) \vec{i}+(4+t) \vec{\jmath}-5 t \vec{k}$ with $a=0$.
(want \vec{r} in terms of s).

$$
\begin{aligned}
\vec{r}^{\prime}(u) & =2 \vec{\imath}+1 \vec{\jmath}-5 \vec{k} \\
\left\|\vec{r}^{\prime}(u)\right\| & =\sqrt{4+1+25}=\sqrt{30} \\
s(t) & =\int^{t}\left\|\vec{r}^{\prime}(u)\right\| d u
\end{aligned}
$$

$$
\begin{aligned}
\vec{r}^{\prime}(u) & =2 \vec{\imath}+1 \vec{\jmath}-5 \vec{k} \\
\left\|\vec{r}^{\prime}(u)\right\| & =\sqrt{4+1+25}=(\sqrt{30}) \\
s(t) & =\int_{a}^{t}\left\|\vec{r}^{\prime}(u)\right\| d u \\
s(t) & =\int_{0}^{t} \sqrt{30} d u \\
s & =\sqrt{30} \int_{0}^{t} 1 d u \\
t & =\sqrt{\frac{s}{30} t} \\
t & \underbrace{t} \underbrace{\frac{s}{30}} \\
\underbrace{(s)}_{\vec{r}(s)} & =\left(3+\frac{2}{\sqrt{30}}\right) \vec{i}+\left(4+\frac{s}{\sqrt{30}}\right) \vec{j}-\frac{5 s}{\sqrt{30}} \vec{k}
\end{aligned}
$$

Note: When $s=9, \vec{r}[t(9)]$ is the point on C that 9 units along C from the point $\vec{r}(0)$.

Notes: (1) $\vec{r}^{\prime}(s)=\vec{T}(t)$, unit tangent vector
Proof: $\left.\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{\frac{d \vec{r}}{d t}}{\frac{d s}{d t}}=\frac{d \vec{r}}{d t} \cdot \frac{d t}{d s}\right\} \begin{aligned} & s(t) \text { must be } \\ & \text { differentiable and invertible }\end{aligned}$

$$
\begin{aligned}
& \stackrel{\ell}{x}^{\sin r^{*}} \frac{d \vec{r}}{d s} \\
& =\vec{r}^{\prime}(s)
\end{aligned}
$$

(2) If $\left\|\vec{r}^{\prime}(m)\right\|=1$, then m is the arc length parameter $(m=s) .\left\{\right.$ parameterizes C_{1}
Def: (curvature of $C: \vec{r}(s)$) $=K=\left\|\frac{d \vec{T}}{d s}\right\|=\left\|\vec{T}^{\prime}(s)\right\|$
Note: \mathbb{K} is the magnitude of the rate of change of unit tangent rector w.r.t. s. Since $\|\vec{T}\|=1$, the only change that occurs in \vec{T} along C is due to the bend in C. (m ore Bead) $=($ larger $K)$.

$$
\text { . } C: r(x)
$$

Theorem: $k=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}$

Lemma : $\vec{T} \cdot \vec{T}^{\prime}=0$

$$
\text { Proof: }\|\vec{T}\|^{2}=\vec{T} \cdot \vec{T}=1
$$

$$
\frac{d}{d t}(\vec{T} \cdot \vec{T})=\frac{d}{d t} I
$$

$$
\vec{T}^{\prime} \cdot \vec{T}+\vec{T} \cdot \vec{T}^{\prime}=0
$$

$$
2 \vec{T}^{\prime} \cdot \vec{T}=0
$$

$$
\vec{T}^{\prime} \cdot \vec{T}=0
$$

Done
Theorem: $K=\frac{\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|^{3}}$

$$
\text { Pf: } \left\lvert\, \begin{aligned}
& \text { Involves a bove lemma } \\
& \text { and } \vec{r}(t)=\|\vec{r}(t)\| \vec{T}(t) \\
& \text { find } \vec{r}^{\prime} \text { and } \vec{r}^{\prime \prime} .
\end{aligned}\right.
$$

(ex) Find $k(t)$ for $\vec{r}(t)=2 t^{2} \vec{l}+t \vec{j}+\frac{1}{2} t^{2} \vec{k}$

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=4 t \vec{\imath}+1 \vec{\jmath}+t \vec{k} \\
& \vec{r}^{\prime \prime}(t)=4 \vec{\imath}+\vec{k}
\end{aligned}
$$

$$
\vec{r}^{\prime} \times \vec{r}^{\prime \prime}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
4 t & \jmath & t \\
4 & 0 & 1
\end{array}\right|=\vec{\imath}-(4 t-4 t) \vec{\jmath}-4 \vec{k}
$$

$$
\left\|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right\|=\sqrt{1+16}=\sqrt{17}
$$

$$
\left\|\vec{r}^{\prime}\right\|^{3}=\left(\sqrt{16 t^{2}+1+t^{2}}\right)^{3}=\left(\sqrt{17 t^{2}+1}\right)^{3}
$$

$$
K(x)=\frac{\sqrt{17}}{\left(\sqrt{17 x^{2}+1}\right)^{3}}=\frac{\sqrt{17}}{\left(17 x^{2}+1\right)^{\frac{3}{2}}}
$$

Note: To find k for $y=f(x)$. Let $x=t$

$$
\vec{r}(t)=\langle t, f(t), 0\rangle
$$

(ex) Let $f(x)=2 x^{2}+5$. Find k at $x=-1$
let $x=t, \vec{r}(t)=\left\langle t, 2 t^{2}+5,0\right\rangle$

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\langle 1,4 t, 0\rangle \\
\vec{r}^{\prime \prime}(t) & =\langle 0,4,0\rangle \\
\vec{r}^{\prime} \times \vec{r}^{\prime \prime} & =4 \vec{k} \\
\left\|\vec{r}^{\prime} \times \vec{r}^{\prime \prime \prime}\right\| & =4 \\
\left\|\vec{r}^{\prime}\right\|^{3} & =\left(\sqrt{16 t^{2}+1}\right)^{3} \\
k(t) & \left.=\frac{4}{\left(\sqrt{16 t^{41}}\right.}\right)^{3} \\
K(-1) & =\frac{4}{(\sqrt{17})^{3}}=\frac{4}{17^{\frac{3}{2}}}
\end{aligned}
$$

Notes: (1) A circle has constant $k=\frac{1}{r}$
(2)

ie. if C has curvature k at point P, then the circle passing through $P \quad w / r=\frac{1}{k}$ is
(ex) Find the radius of the circle of called the $\frac{\text { circle }}{\text { che }} \frac{\text { curvature }}{\text { circle lies }}$ curvature of $y=2 x^{2}+5$ at $x=-1$ on the concave side of the curve and shares a common tangent with the curve at P.

$$
\begin{aligned}
& K=\frac{4}{17 \frac{3}{4}} \\
& r=\frac{17^{\frac{3}{2}}}{4} \approx 17.523
\end{aligned}
$$

$$
y=2 x^{2}+5
$$

