Tangent Planes and Linear Approximations

Goals:

1. To find the tangent plane to a surface at a given point.
2. To calculate the total differential of a multivariable function.
3. To determine whether or not a function is differentiable.

Derivation of the Tangent Plane to a Surface at a Point
Note that the tangent plane to $z=f(x, y)$ at $\left(x_{0}, y_{0}, z_{0}\right)$
has equation of the form $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$
or $z-z_{0}=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)$.
solve for this

So the equation of the tangent plane is...

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

(ex) a) Find the equation of the tangent plane to

$$
\begin{aligned}
& f(x, y)= x^{2}-2 x y+y^{2} \text { at }(1,2,1) . \\
& f_{x}(x, y)= 2 x-2 y \longrightarrow f_{x}(1,2)=2-4=-2 \\
& f_{y}(x, y)=-2 x+2 y \rightarrow f_{y}(1,2)=-2+4=2 \\
& z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& z-1=-2(x-1)+2(y-2)
\end{aligned}
$$

b) Find a linearization, $\underbrace{L(x, y)}$, for $f(x, y)$ at $(1,2,1)$.
z from

$$
\begin{aligned}
L(x, y) & =-2(x-1)+2(y-2)+1 \\
& =-2 x+2+2 y-4+1 \\
& =-2 x+2 y-1
\end{aligned}
$$

c) Use $L(x, y)$ to estimate $f(0.95,2.02)$

$$
L(0.95,2.02)=-2(0.95)+2(2.02)-1
$$

[Turns out $f(0.95,2.02) \approx 1.1449$]
(ex) Consider the tangent plane equation:

$$
z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+z_{0} .
$$

Let $x=x_{0}+\Delta x$ and $y=y_{0}+\Delta y$ and discuss What the result represents geometrically.

$$
\begin{aligned}
z & =\underbrace{f_{x}\left(x_{0}, y_{0}\right)\left(\left(x_{0}+\Delta x\right)-x_{0}\right)+f\left(x_{0}, y_{0}\right)\left(\left(y_{0}+\Delta y\right)-y_{0}\right)}_{\begin{array}{c}
\text { change in he is of } \\
\text { the tangent plane } \\
\text { from inputs of }\left(x_{0}, y_{0}\right) \\
\text { to inputs of }\left(x_{0}+\Delta x, y_{0}+\Delta y\right)
\end{array}}+\underbrace{f_{x}\left(z_{0}, y_{0}\right) \Delta x+f\left(x_{0}, y_{0}\right) \Delta y}+z_{0}
\end{aligned}
$$

Definitions
(1)

(2) $\Delta y \approx d y$ where $\Delta y=f\left(x_{0}+\Delta x\right)-f(x)$, f differentiable and Δx "small."
[$\Delta y=$ change in height of $y=f\left(x_{0}\right)$ from x_{0} to $x_{0}+\Delta x$]
(2)

$$
\begin{aligned}
& \underbrace{\Delta z}_{\text {change in height }}=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right) \\
& \text { of from }\left(x_{0}, y_{0}\right) \\
& \text { to }\left(x_{0}+\Delta x, y_{0}+\Delta y\right)
\end{aligned}
$$

Note: For "well-behaved" functions and for "small" $\Delta x, \Delta y, d z \approx \Delta z$ when going from inputs $\left(x_{0}, y_{0}\right)+0\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$.
(ex) Let $z=\sin (2 x+3 y)$. use $d z$ to estimate Δz from $(-3,2)$ to $(-2.95,2.04)$

$$
\begin{aligned}
& d z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y \\
& f_{x}(x, y)=2 \cos (2 x+3 y) \longrightarrow f_{x}(-3,2)=2 \\
& f_{y}(x, y)=3 \cos (2 x+2 y) \longrightarrow f_{y}(-3,2)=3 \\
& d z=2(0.05) \times 3(0.04)=0.22
\end{aligned}
$$

Note: (1) In call I, differentiability \Rightarrow continuity.
(2) Problem: paritials exist $\Rightarrow f$ is continuous see(ex) below
[we want a definition of differentiability for $z=f(x, y)$ such that f differentiable \Rightarrow f is continuous.]
(3) Solution: come up with a definition of a differentiable function that ensures $\Delta z \approx d z$ for "small" input changes.

Definition: $z=f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ as long as Δz can be written as ...

$$
\Delta z=\underbrace{}_{\left.d z\right|_{\left(x_{0}, y_{0}\right)} ^{f_{x}}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y}+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where $\quad \varepsilon_{1}, \varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

Theorem 1: $\quad z=f(x, y)$ differentiable at $\left(x_{0}, y_{0}\right)$

$$
\Rightarrow f \text { is continuous }\left(x_{0}, y_{0}\right) \text {. }
$$

Proof: uses the above def to show $/ \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f\left(x_{1}, y\right)=f\left(x_{0}, y_{0}\right)$

$$
\underbrace{\text { show } /\left(\lim _{0}, y\right) \rightarrow\left(x_{0}, y_{0}\right)}_{\text {means } f \text { is continuous at }\left(x_{0}, y_{0}\right)} f_{\left.(x, y)=f\left(x_{0}, y_{0}\right)\right)}
$$

Theorem 2: f_{x}, f_{y} continuous on D, then f is differentiable on D.

$$
\begin{aligned}
& \text { Partials exisflerentioble at }(0,0)! \\
& \text { ex Let } f(x, y)=\left\{\begin{array}{cc}
\frac{2 x y}{2 x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
\end{aligned}
$$

Find the partials $f_{x}(0,0)$ and $f_{y}(0,0)$, if they exist.

So, just because the partials exist at a point does not mean that the function is well-behaved at that point.
f behaving badly around input $(0,0)$

