Goal:

1. To find the absolute extrema of a two-input variable function.
2. To find local (or relative) extrema using the Second Derivative Test.

Definitions: (1.) Suppose a function f is defined on a closed bounded region R with $f\left(x_{0}, y_{0}\right) \leq f(x, y) \leq f\left(x_{1}, y_{1}\right)$ for all (x, y) in R. Then $f\left(x_{0}, y_{0}\right)$ and $f\left(x_{1}, y_{1}\right)$ are relative: (opal called the absolute minimum and absolute maximum of f in R.
2. A function of two variables has a local maximum at (a, b) if $f(x, y) \leq f(a, b)$ for all points (x, y) in an open disk with center $(\underline{a, b})$.
A function of two variables has a local minimum at (a, b) if $f(x, y) \geq f(a, b)$ for all points (x, y) in an open disk with center (a, b)
4. A point (a, b) is called a critical point of f is $f_{x}(a, b)=0$ ind $f_{y}(a, b)=0$ or if one of these partial derivatives does not exist.

$$
\downarrow^{f} f(x, y)
$$

Theorem 1: (Extreme Value Theorem) Suppose f is a continuous function of two variables on a closed bounded region R in the $x y$-plane. Then f takes on both an absolute maximum and absolute minimum in R.

Theorem 2: If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

Note: 1. Although a critical point is not necessarily a minimum or maximum, local extrema occur only at critical points.
\rightarrow 2. The critical points of a function f can also be defined as the points in the domain of f for which $\nabla f(x, y)=\mathbf{0}$ or is undefined. Filling in 0 for the partial derivatives in $\boldsymbol{\nabla} f=f_{x} \boldsymbol{z}+\boldsymbol{f}_{\boldsymbol{y}} \boldsymbol{J}$ the tangent plane formula from 15.4 gives the equation $z=z_{0}$, a horizontal plane. Thus, the critical values of a function correspond to the points where the $=\left\langle f_{x}, f_{y}\right\rangle_{0}^{\text {function's tangent plane is horizontal or does not exist. }} \quad\left(z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)\right.$ $z-z_{0}=0$ when $\nabla f=0$
$z=z_{0}$ horizontal tangent plane
(ex) Let $f(x, y)=3 x^{2}+2 y^{2}-4 y$. Find the absolute

bounded by graphs, a closed bounded region.
by EVT, there will abs extrema on this crocesestoon som since f is a polynomial (all polys are continuous)
(1) Interior C.p.'s

$$
f(x, y)=3 x^{2}+2 y^{2}-4 y
$$

$$
\begin{gathered}
f_{x}(x, y)=6 x=0 \rightarrow x=0 \\
f_{y}(x, y)=4 y-4=0 \rightarrow y=1 \\
\text { c.p. }(0,1)
\end{gathered}
$$

(2) Boundary $y=4,-2 \leq x \leq 2$

$$
\begin{aligned}
& f(x, 4)=3 x^{2}+2(4)^{2}-4(4) \\
& f(x, 4)=3 x^{2}+16 \\
& \text { c.p. }(0,4) \\
& \text { Also check } x=-2, x=2 \\
& (-2,4)(2,4)
\end{aligned}
$$

(3) Boundary

$$
\begin{aligned}
& f\left(x, x^{2}\right)=3 x^{2}+2\left(x^{2}\right)^{2}-4 x^{2} \\
& g(x)=f\left(x, x^{2}\right)=2 x^{4}-x^{2} \\
& g(x)=2 x^{4}-x^{2} \\
& g^{\prime}(x)=\begin{array}{l}
8 x^{3}-2 x=0 \\
2 x\left(4 x^{2}-1\right)=0
\end{array} \\
& 2 x=0 \text { or } 4 x^{2}-1=0 \\
& \begin{array}{l}
x=0 \\
y=0
\end{array} \quad x^{2}=\frac{1}{4} \\
& y=0 \\
& x= \pm \frac{1}{2} \\
& (0,0) \quad\left(\pm \frac{1}{2}, \frac{1}{4}\right)
\end{aligned}
$$

use a table to find the abs. extrema

Theorem 3: (Second Derivatives Test) Suppose the second partials of f are continuous on an open region containing (a, b) and $\nabla f(a, b)=\mathbf{0}$ (ie. (a, b) is a critical point). Let

$$
d=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

a) If $d>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
b) If $d>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
c) - If $d<0$, then $f(a, b)$ is neither a local minimum nor a local maximum.
d) The test is inconclusive if $d=0$.

similar
calk I result
indicating local max corresponding to $x=a$ where a is a critical value

To show part (b) is true, Take ad order directional derivative in the direction of a generic \vec{u}. Show trace is concave down in an open disk containing (a, b) (for any such \vec{u}). Then $f(a, b)$ is a local max by calcI and derivative test.
(ax) Find the local extrema

$$
\begin{aligned}
& \rightarrow f(x, y)=x+y+\frac{1}{x y}, x, y>0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} y-x y^{2}=0 \\
& x y(x-y)=0 \\
& x^{3}=1 \\
& x=1 \\
& y=1 \\
& x-y=0 \\
& y=x \\
& \text { (} 1,1 \text {) cp. } \\
& d=\widetilde{f}_{x x}^{2}(1,1) \widetilde{f}_{f_{y}(1,1)}^{2}-\left(\widetilde{f_{x y}(1,1)}\right)^{2} \\
& \begin{array}{l}
f_{x}(x, y)=1-\frac{1}{x^{2} y}=0 \\
f_{y}(x, y)=1-\frac{1}{x y^{2}}=0
\end{array} \\
& f_{x x}^{(x, y)}=\frac{2}{x^{3} y} \xrightarrow{\substack{\text { val } \\
a+0,1)}} 2>0 \\
& f_{y y}=\frac{2}{x y^{3}} \rightarrow 2 \\
& f_{x y}=\frac{1}{x^{2} y^{2}} \rightarrow 1
\end{aligned}
$$

$$
d=4-1=3>0
$$

$f_{x x}(1,1)=2>0$, which means $f(1,1)=3$
is a local minimum
$\left[\begin{array}{rl}\left.\text { no local max since } f \rightarrow \infty \text { as } \begin{array}{rl}x, y & \rightarrow \infty \text { or } \\ x, y & \rightarrow 0\end{array}\right]\end{array}\right.$
(ex) Find the dimensions of the box with largest volume if the total surface area is $64 \mathrm{~cm}^{2}$.

$$
\begin{array}{r}
V=x y z \\
A=2 x z+2 y z+2 x y=64 \\
x z+y z+x y=32 \\
(x+y) z=32-x y \\
z=\frac{32-x y}{x+y}
\end{array}
$$

$$
\begin{gathered}
V(x, y)=x y\left(\frac{32-x y}{x+y}\right) \\
V(x, y)=\frac{32 x y-x^{2} y^{2}}{x+y} \\
V_{x}=\frac{(x+y)\left(32 y-2 x y^{2}\right)-\left(32 x y-x^{2} y^{2}\right) \cdot 1}{(x+y)^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{32 x y-2 x^{2} y^{2}+32 y^{2}-2 x y^{3}-32\left(x y+2 x^{2} y^{2}\right.}{(x+y)^{2}} \\
& =\frac{-x^{2} y^{2}+32 y^{2}-2 x y^{3}}{(x+y)^{2}} \\
& \begin{array}{l}
v_{x}=\begin{array}{l}
\frac{y^{2}\left(-x^{2}+32-2 x y\right)}{(x+y)^{2}}=0 \\
v_{y}=\frac{x^{2}\left(-y^{2}+32-2 x y\right)}{(x+y)^{2}}=0
\end{array}, l
\end{array} \\
& -x^{2}+32-2 x(y)=0 \rightarrow-x^{2}+32-2 x^{2}=0 \\
& -\left(-y^{2}+32-2 x y=0\right) \\
& -x^{2}+y^{2}=0 \\
& y^{2}=x^{2} \\
& y=(x) \\
& \begin{array}{l}
z= \\
-\frac{32}{3} \\
+\sqrt{\frac{37}{5}}
\end{array} \\
& z=\frac{\frac{32}{1}-\frac{32}{3}}{\sqrt{\frac{32}{3}}+1 \sqrt{\frac{32}{5}}} \\
& z=\frac{\frac{64}{3}}{(2) \sqrt{\frac{32}{3}}}=\frac{\frac{64}{3 \cdot 7} \cdot \frac{\sqrt{3}}{\sqrt{32}}}{}=\frac{32}{3} \cdot \frac{\sqrt{3}}{\sqrt{32}},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8}{8} 132 \\
& =\frac{32}{3} \cdot \frac{\sqrt{3}}{\sqrt{2}} \\
& =\frac{8 \sqrt{3}}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{24 \sqrt{6}}{3 \cdot 4^{2}} \\
& =\left(\frac{4 \sqrt{6}}{3}=\sqrt{\frac{32}{3}}\right. \\
x=y & =z
\end{aligned}
$$

The dimensions are $\sqrt{\frac{3 \pi}{3}} \mathrm{~cm} \times \sqrt{\frac{3 \pi}{3}} \mathrm{~cm} \times \sqrt{\frac{32}{3}} \mathrm{~cm}$

