Goal: To solve constrained optimization problems using Lagrange Multipliers

$$
z=f(x, y)
$$

only allowed to plug in (x, y) values from

$$
\underset{a}{l} \text { level curve } \rightarrow \underbrace{g(x, y)=c}_{i=c}
$$

a curve in x, y plane
Assume $\left(x_{0}, y_{0}\right)$ is on $\overbrace{g(x, y)=c}^{\text {curve }}$ and it produces a local max on f under restricted domain g. Note that both $\nabla f\left(x_{0} y_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right)$ are normal to ${ }^{\text {le rel }} f$ at $\left(x_{0}, y_{0}\right)$ (since g is tangent to $f^{\prime} s$ level curve at $\left(x_{0}, y_{0}\right)$). So

$$
\nabla f \| \nabla g \text { at }\left(x_{0}, y_{0}\right) \Longrightarrow \nabla f=\lambda \nabla_{g}{ }^{*} \text { at }
$$ (x_{0}, y_{0}).

4 this leads to the method of Lagrange multipliers for finding extrema
~ $\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$
Note: (1) λ is called a Lagrange Multiplier
(2) $x^{\text {also }}$ holds if $\left(x_{0}, y_{0}\right)$ produces a minimum

Note: (1) A is called a lagrange mivipicuc
(2) $x^{\text {also }}$ holds if $\left(x_{0}, y_{0}\right)$ produces a minimum value on f.
(3) On the constraint, 9, the extrema are absolute.
(4) As a luways, f is differentiable, g is smooth.
(5) $\nabla g\left(x_{0}, y_{0}\right) \neq \vec{O}$ (It could turn out that $\nabla f\left(x_{0}, y_{0}\right)=\overrightarrow{0}$ when $\lambda=0$)

Method
(1) Find all values of x, y, and λ such that $\nabla f=\lambda \nabla g$
(2) Evaluate f at pts from (1) to find the abs. extrema of f on the constraint.
(ex) Find the extrema of $f(x, y)=2 x^{2}+x+y^{2}-2$

$$
\lambda \nabla g=\left\langle\lambda x \mu-\operatorname{Lon}^{\prime} /\right.
$$

(1) $4 x+1=2 \lambda x$ solve to critical points

$$
\text { (2) } 2 y=2 \lambda y
$$

$$
\text { (3) } x^{2}+r^{2}=4
$$

$\mathrm{By}_{y}(2) \quad 2 y-2 \lambda y=0 \stackrel{\downarrow^{\text {implies }}}{\Rightarrow} 2 y(1-\lambda)=0$
$\Rightarrow r=0$ or $\lambda=1$.
case I: $y=0$. By (3) $x^{2}=4 \Rightarrow x= \pm 2$
$(\pm 2,0) \mathrm{cps}$.
Case II: $\lambda=1$
By (1) $4 x+1=2 x \Rightarrow 2 x=-1 \Rightarrow-\frac{1}{x}$
By (3) $\left(-\frac{1}{8}\right)^{2}+y^{2}=4 \Rightarrow\left(y^{2}=4-\frac{1}{4}=\frac{15}{4}\right.$

$$
\Rightarrow \quad \gamma= \pm \frac{\sqrt{15}}{2} \Rightarrow \operatorname{cop}\left(-\frac{1}{\gamma}, \pm \frac{\sqrt{15}}{2}\right) .
$$

x	y	$f(x, y)=2 x^{2}+x^{2}+y^{2}-2$
-2	0	4
2	0	$f(-2,0)=8-2-2=4$
$-\frac{1}{2}$	$\pm \frac{\sqrt{15}}{2}$	$\left(\frac{7}{4}\right)$ abs \max min

Note: This method also works for $w=f(x, y, z)$ w/ constraint surface $\underbrace{g(x, y, z)=0}_{\text {surface }}$
(ex) Find the extrema using L.M.

$$
f(x, y, z)=x^{2} y^{2} z^{2} ; \underbrace{x^{2}+y^{2}+z^{2}=1}_{\text {sphere }}
$$

$$
\nabla f=2 x y^{2} z^{2} \vec{\imath}+2 x^{2} y z^{2} \vec{\jmath}+2 x^{2} y^{2} z \vec{k} \underbrace{x^{2}+y^{2}+z^{2}-1}_{g(x, y, z)}=0
$$

$$
\lambda \nabla_{g}=2 \lambda \times \vec{l}+2 \lambda r \vec{J}+2 \lambda z \vec{k}
$$

(1) $2 x y^{2} z^{2}=2 \lambda x \rightarrow \lambda=y^{2} z^{2}$
(2) $2 x^{2} y z^{2}=2 \lambda y \rightarrow \lambda=x^{2} z^{2}$
(3) $2 x^{2} y^{2} z=2 \lambda z \rightarrow \lambda=x^{2} y^{2}$
(4) $x^{2}+y^{2}+z^{2}=1$
abs. min.
Note: when $x=0$ or $y=0$ or $z=0, f=0$, which is abs. min .
So Assume $x, y, z \neq 0$.
From (1), (2), (3), $\begin{aligned} & y^{2} z^{2}=x^{2} z^{2}=x^{2} y^{2} . \\ & L y^{2}=x^{2}=z^{2}\end{aligned}$
From (4) $x^{2}+x^{2}+x^{2}=1 \Rightarrow 3 x^{2}=1 \Rightarrow x= \pm \frac{1}{\sqrt{3}}$

$$
\begin{aligned}
& \left(\pm \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\pm \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right),\left(\pm \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\
& \left(\pm \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right) \\
& f\binom{\text { Any }}{\text { c.p. }}=\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}=\left(\frac{1}{27}\right. \text { abs. }
\end{aligned}
$$

Note:

Note:

If \vec{u}, \vec{v}, and \vec{w} lie in the same plane, then \vec{w} can be written in terms of \vec{u} and \vec{v} using scalar multiplication and the triangle law.

Two Constraints
Suppose $w=f(x, y, z)$ has two constraints, $g(x, y, z)=c$ and $h(x, y, z)=k$ The domain of f is on the curve of intersection of h and g. If $f\left(x_{0}, y_{0}, z_{0}\right)$ is an extremum, then it turns out $D f\left(x_{0}, r_{0}, z_{0}\right)$ is in the plane created by $D_{g}\left(x_{0}, y_{0}, z_{0}\right)$ and $\nabla h\left(x_{0}, y_{0}, z_{0}\right)$.
$S_{0}, \quad \nabla f\left(x_{0}, y_{0}, z_{0}\right)=\lambda \nabla s\left(x_{0}, y_{0}, z_{0}\right)+\mu \nabla h\left(x_{0}, y_{0}, z_{0}\right)$

Lagrange Multipliers
(ex) Find the extrema using L.m.

$$
\begin{array}{lr}
f(x, y, z)=3 x-y-3 z & \underbrace{x+y-z=0}_{g}, \underbrace{x^{2}+2 z^{2}=}_{h} \\
\nabla f=(3 \vec{\imath}-1 \vec{\jmath}-3 \vec{k} & \nabla \vec{f}=\lambda \nabla g+\mu \nabla h \\
\nabla g=(\lambda \vec{\imath}+\lambda \vec{\jmath}-\lambda \vec{k} &
\end{array}
$$

$$
\lambda \nabla g=\theta) \vec{\imath}+\lambda \vec{\jmath}-\lambda \vec{k}
$$

$$
\begin{aligned}
& \lambda \nabla g=(\lambda) \vec{i}+\lambda \vec{i}-\lambda k \\
& \mu \nabla h=(2 \mu x) \vec{i}+4 \mu z \vec{k} \\
& 3=\lambda+2 \mu x \rightarrow \begin{array}{l}
3=-1+2 \mu x \\
-1)=\lambda \\
-3=-\lambda+4 \mu z \rightarrow\left\{\begin{array}{l}
\text { (1) } \\
x+y-z=0 \\
x^{2}+2 z^{2}=1
\end{array}\right. \\
-3=1+4 \mu z \\
x+y-z=0 \\
x^{2}+2 \lambda_{2}^{2}=1
\end{array}
\end{aligned}
$$

From (1) and (2), $x=\frac{4}{2 \mu} \Rightarrow x=\left(\frac{2}{\mu}\right)$ and $z=\frac{-4}{4 \mu} \Rightarrow z=\left(\frac{-1}{\mu}\right) \leftarrow$
From (4) $\left(\frac{2}{\mu}\right)^{2}+2\left(\frac{-1}{\mu}\right)^{2}=1 \Rightarrow \frac{4}{\mu^{2}}+\frac{2}{\mu^{2}}=1$

$$
\begin{aligned}
\Rightarrow \frac{6}{\mu^{2}} & =1 \Rightarrow \mu^{2}=6 \Rightarrow \mu= \pm \sqrt{6} \\
x & = \pm \frac{2}{\sqrt{6}}, z=\mp \frac{1}{\sqrt{6}}
\end{aligned}
$$

$$
x=\frac{2}{\sqrt{6}}\left\{\begin{array}{l}
x+y-z=0 \\
\frac{2}{\sqrt{6}}+y+\frac{1}{\sqrt{6}}=0 \Rightarrow y=\left(\frac{-3}{\sqrt{6}}\right. \\
-\frac{2}{\sqrt{6}}+y-\frac{1}{\sqrt{6}}=0 \Rightarrow y=\frac{3}{\sqrt{6}}
\end{array}\right.
$$

$$
\begin{aligned}
& x=-\frac{2}{\sqrt{8}} \left\lvert\,-\frac{2}{\sqrt{6}}+y-\frac{1}{\sqrt{6}}=0 \Rightarrow y=\frac{3}{\sqrt{6}}\right. \\
& \underbrace{\left(\frac{2}{\sqrt{6}},-\frac{3}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)}_{a} \underbrace{\left(-\frac{2}{\sqrt{6}}, \frac{3}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)}_{b} \text { cp. } \\
& f(\vec{a})=a^{a^{b s} \cdot \max }, \quad f(\vec{b})=-2 \sqrt{6}
\end{aligned}
$$

(ex) Find the points on the surface $y^{2}=9+x z$
set up
only
\uparrow that are closest to the origin. η minimizing
distance speared
Produces same cp .pe's

$$
\begin{aligned}
d^{2} & =f(x, y, z)=x^{2}+y^{2}+z^{2} \\
\nabla f & =2 x \vec{i}+2 \gamma \vec{u}+2 z \vec{k} \\
\lambda \nabla g & =-\lambda z \vec{i}+2 \lambda y \vec{v} \\
2 x & =-\lambda z \\
2 y & =2 \lambda y \\
2 z & =-\lambda x \\
y^{2} & =9+x z
\end{aligned}
$$ constraint

$$
\underbrace{y^{2}-x z-9}_{9(x, y, z)}=0
$$

is the closest point on the surface $y^{2}=9+x z$ to the origin.

