Goals:

1. To convert between rectangular, cylindrical, and spherical coordinates
2. To represent surfaces in space using cylindrical and spherical coordinates

(ex) Convert to cylindrical coordinates: $(3,-3,-7)$

$$
\begin{aligned}
& (r, \theta, z) \\
& r=\sqrt{9+(-3)^{2}}=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{-3}{3}=-1 \\
\theta & =-45^{\circ}
\end{aligned}
$$

(ex) Plot $\left(2, \frac{2 \pi}{3}\right)(1)$ in cyl. coord and then convert to rectangular.

(ex) Convert to rectangular coordinates and sketch

$$
\begin{gathered}
r \cdot r=2 r \cos \theta \\
r^{2}=2 r \cos \theta \\
x^{2}+y^{2}=2 x \\
1 x^{2}-2 x+1+y^{2}=0+1 \\
(x-1)^{2}+y^{2}=1 \\
(x-1)^{2}+y^{2}=1
\end{gathered}
$$

cylinder $w /$ axis through $(1,0)$ parallel to z-avis

Spherical Coordinates

$$
\begin{gathered}
0 \leq \theta \leq 2 \pi \\
\downarrow \\
(\rho, \stackrel{\theta}{\theta}, \phi \\
\uparrow \\
0 \leq \phi \leq \pi
\end{gathered}
$$

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, z=\rho \cos \phi \\
& \rho^{2}=x^{2}+y^{2}+z^{2}, \quad \tan \theta=\frac{y}{x}, \quad r=\rho \sin \phi
\end{aligned}
$$

(ex) convert and I.D.

$$
\begin{aligned}
& x^{2}+y^{2}-3 z^{2}=0 \text { cone } \\
& x^{2}+y^{2}+z^{2}-4 z^{2}=0 \\
& p^{2}-4 \quad \rho \cos \phi \\
& \rho^{2}-4 \rho^{2} \operatorname{ces}^{2} \phi=0 \\
& \rho^{2}\left(1-4 \cos ^{2} \phi\right)=0 \\
& \rho^{2}=0 \quad 0 \quad 1-4 \cos ^{2} \phi=0
\end{aligned}
$$

$$
\begin{aligned}
& p^{2}=0 \quad 0-\quad 1-4 \cos ^{2} \phi=0 \\
& \rho=0 \quad \cos \phi= \pm \sqrt{\frac{1}{4}} \\
& \cos \phi= \pm \frac{1}{2} \\
& \cos \phi=-\frac{1}{2} \text { or } \cos \phi=\frac{1}{2} \\
& \underbrace{\phi=\frac{2 \pi}{3}}_{\text {cotton half }} \\
& \phi=\frac{\pi}{3} \\
& \text { Top half of cone } \\
& (\rho, \theta, \phi) \\
& \rho=a \rightarrow \text { sphere } \\
& \theta=b \rightarrow \text { half-plane } \\
& \phi=c \rightarrow h a / f-c m e
\end{aligned}
$$

(ex) convert of cylindrical coordinates:

$$
\begin{array}{r}
\left(2,75^{\circ}, 45^{\circ}\right)=\left(\left(\sqrt{2}, 75^{\circ}, \sqrt{2}\right)\right. \\
\left(2=\rho \sin \phi=2 \sin 45^{\circ}=\sqrt{2}\right. \\
z=\rho \cos \phi=2 \cos 45^{\circ}=\sqrt{2}
\end{array}
$$

