Goals:

1. To sketch a vector field.
2. To find the gradient vector field of a function.

Definition: A vector field, (F) is a function that maps points to vectors.
$\xrightarrow{\text { lane }} \vec{F}(x, y)=P(x, y) \vec{\imath}+Q(x, y) \vec{\jmath}=\langle P, Q\rangle$
$\xrightarrow{\text { space }} \vec{F}(x, y, z)=P(x, y, z) \vec{\imath}+Q(x, y, z) \vec{\jmath}+R(x, y, z) \vec{k}$

$$
=\langle P, Q, R\rangle
$$

(ex) sketch \vec{F}
a) $\vec{F}(x, y)=1 \vec{\imath}+2 \vec{\jmath}=\langle 1,2\rangle$
input is the tail.

b) $\vec{F}(x, y)=y \vec{\jmath}=\langle 0, y\rangle$

c) $\vec{F}(x, y)=x \vec{\imath}+y \vec{\jmath}=\langle x, y\rangle$

Each vector points radially out from origin.
$\|\vec{F}\|=$ distance from origin

d) $\vec{F}(x, y)=-y \vec{\imath}+x \vec{\jmath}=\langle-y, x\rangle$

output					
$(1,2)$		$\\|-2,1\rangle$	$\vec{F} \\|=\sqrt{x^{2}+y^{2}}$		

e) $F(x, y, z)=z \vec{\jmath}=\langle 0, z, 0\rangle$

Note: Vector Fields are used to model...
(1) Weather (wind velocity)
(2) (sravitional field)
(3) magnetic field
force field
(4) electric field

(4) electric field

Definition: A vector field, F, is conservative if there is a scalar function $f(x, y, z)$ such that $F=$ del $f=\nabla f$

$$
\begin{aligned}
& \text { gradient of } f \\
& \nabla f=f_{x} \vec{l}+f_{y} \vec{\jmath}+f_{z} \vec{k}
\end{aligned}
$$

(ex) Find the gradient vector field of $f(x, y, z)=\sqrt{\sqrt{x^{2}+y^{2}+z^{2}}}$

$$
\begin{aligned}
& \nabla f=f_{x} \vec{\imath}+f_{y} \vec{u}+f_{z} \vec{k} \\
& f_{x}(x, y, z)=\frac{1}{x}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} \mu x=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& f_{y} \quad=\quad=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& f_{z}=\frac{z}{\sqrt{x^{2} x y^{2}+z^{2}}} \\
& \nabla f=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \vec{i}+\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \vec{j}+\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \vec{k}
\end{aligned}
$$

ex Which vector field matches the plot.

a) $x \vec{\imath}-2 y \vec{j}$
(b) $\times \vec{i}+1 \vec{j}$
c) $1 \vec{\imath}+y \vec{\jmath}=\langle 1, y\rangle$

