Goal: To calculate the curl and divergence of $F=\langle P, Q, R\rangle$
Def
(1) "del", ∇, is differential operator:

$$
\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \quad f(x, y, z)
$$

Gradient: $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial}{\partial z}\right\rangle$

$$
=\left\langle f_{x}, f_{y}, f_{z}\right\rangle
$$

(2) Divergence of $f: \underbrace{\nabla \cdot \vec{F}}_{\operatorname{div} \vec{F}}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\langle P, Q, R\rangle$

$$
=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

(3) Curl of \vec{F} : curl $\vec{F}=\nabla \times \vec{F}=\left|\begin{array}{ccc}\vec{\imath} & \vec{\jmath} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \rho & Q & R\end{array}\right|$
(ex) Find the $\operatorname{div} \vec{F}$ and curl \vec{F} where

$$
\vec{F}=\left\langle x e^{y}, x z, z e^{y}\right\rangle
$$

$$
\begin{aligned}
& \operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle x \cdot e^{-y}, x z, z e^{y}\right\rangle \\
& =e^{-y}+0+e^{y} \\
& =e^{-y}+e^{y} \\
& \operatorname{curl} \vec{F}=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{u} & \vec{u} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{d}{\partial z} \\
x e^{-y} & x z & z e^{y}
\end{array}\right| \\
& =\left(z e^{y}-x\right) \vec{\imath}-(0-0) \vec{\jmath}+\left(z+\left(t x e^{\dot{y}}\right)\right) \vec{k} \\
& =\left(z e^{y}-x\right) \vec{i}+\left(z+x e^{-y}\right) \vec{k}
\end{aligned}
$$

Theorem: \vec{F} is conservative cf curl $\vec{F}=\vec{O}$

$$
T_{\vec{F}}=\nabla f
$$

\Rightarrow (\vec{F} censer.)

$$
\text { curl } \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right|=\overrightarrow{0} .
$$

\leftarrow use stokes' Theorem

$$
P \quad Q \quad R
$$

(ex) Determine if $\vec{E}=\left(e^{z}\right) \vec{i}+1 \vec{j}+x e^{z} \vec{k}$ is conservative. If so, find a potential function for f.

To show \vec{F} conservative, take curl \vec{F} to show it is $\vec{O}[$ ie. show $\operatorname{curl} \vec{F}=\overrightarrow{0}]$

$$
\operatorname{curl}\left|\vec{F}=\left|\begin{array}{ccc}
\vec{e} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{d}{\partial y} & \frac{\partial}{\partial z} \\
e^{z} & 1 & x e^{z}
\end{array}\right|=\overrightarrow{0}\right.
$$

$$
\begin{aligned}
& f(x, y, z)=\int e^{z} d x \\
&= \sqrt{x e^{z}+g(y, z)} \\
& \int g y(y, z) d y=\int I d y \\
& g(y, z)= y+h(z) \\
& f(x, y, z)=x e^{z}+y+h(z) \\
& f_{z}= \frac{x e^{z}+h^{\prime}(z)=x e^{z}}{h^{\prime}(z)=0}
\end{aligned}
$$

$$
\begin{gathered}
h^{\prime}(z)=0 \\
h(z)=k, k \text { is a constant } \\
\left(f(x, y, z)=x e^{z}+y+k\right.
\end{gathered}
$$

