Warmup
(ex) Let $\vec{r}(t)=t \vec{i}+\cos t \vec{\jmath}+\sin t \vec{k}$

$$
\begin{aligned}
& \text { Find } \vec{T}(t)=\frac{r^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{\vec{V}(t)}{\| \overrightarrow{\vec{r}(t) \|}} \\
& \vec{r}^{\prime}(t)=\mid \vec{\imath}-\sin t \vec{j}+\cos t \vec{k} \\
& \|\vec{r}(t)\|=\sqrt{1+\sin ^{2} t+\cos ^{2} t}=\sqrt{2} \\
& \vec{T}(t)=\frac{1}{\sqrt{2}}(1 \vec{\imath}-\sin t \vec{\jmath}+\cos t \vec{k}) \\
& \vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|} \\
& \vec{\tau}^{\prime}(k)=\left(\frac{1}{\sqrt{2}}(-\cos t) \vec{\jmath}-\sin t \vec{k}\right) \\
& \left\|\vec{T}^{\prime}(t)\right\|=\frac{1}{\sqrt{2}} \sqrt{\left(\cos ^{3} t\right)+\sin ^{2} t} \\
& =\frac{1}{\sqrt{2}} \\
& \vec{N}(t)=\frac{\sqrt{2}(-\cos t \vec{v}-\sin t \vec{k})}{\frac{k_{2}}{2}} \\
& \vec{N}(t)=0 \vec{i}-\cos t \vec{j}-\sin t \vec{k}
\end{aligned}
$$

The unit Binormal vector $=\vec{B}=\vec{T} \times \vec{N}$

$$
\begin{aligned}
& \vec{T}(t)=\frac{1}{\sqrt{2}}\left(0 \vec{\imath}-\frac{1}{-\sin t} \vec{\jmath}+(\cos t \vec{k})\right. \\
& \vec{B}=\vec{T} \times \vec{N} \\
& =\frac{1}{\sqrt{2}}\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\begin{array}{ll}
2 & -\sin t \\
0 & -\cos t
\end{array} & -\cos t \\
0
\end{array}\right| \\
& =\frac{1}{\sqrt{2}}\left[\left(\sin ^{2} t+\left(+\cos ^{2} t\right)\right) \vec{\imath}-(-\sin t) \vec{\jmath}+(-\cos t) \vec{k}\right] \\
& \vec{B}(t)=\frac{1}{\sqrt{2}}(\vec{i}+\sin t j-\cos t \vec{k}) \\
& \text { TNB frame } \\
& \vec{B}=\vec{T} \times \vec{N} \\
& \|\vec{B}\|=\underbrace{\| \vec{T}}_{\|}\| \| \vec{N}\|\underbrace{\|}_{1}\| \underbrace{\sin 90^{\circ}}_{1} \\
& \|\vec{B}\|=1
\end{aligned}
$$

