Math 205 Final Exam Formula Sheet

- 1. Angle between two vectors: $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$
- 2. Projection of **u** onto **v**: $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v}$
- 3. Work formulas: $W = \|\operatorname{proj}_{\overrightarrow{PQ}} \mathbf{F}\| \|\overrightarrow{PQ}\|, \quad W = \|\mathbf{F}\| \|\overrightarrow{PQ}\| \cos \theta, \quad W = \mathbf{F} \bullet \overrightarrow{PQ}$
- 4. Parametric equations of a line in space: $x = x_1 + at$, $y = y_1 + bt$, $z = z_1 + ct$
- 5. Equation of a plane: $a(x-x_1) + b(y-y_1) + c(z-z_1) = 0$
- 6. The distance between a plane and a point Q (not on the plane): $D = \| \operatorname{proj}_{\mathbf{n}} \overrightarrow{PQ} \| = \frac{|\overrightarrow{PQ} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$
- 7. The distance between a point Q and line in space is given by where \mathbf{v} is the direction vector for the line and \mathbf{P} is a point on the line: $\mathbf{D} = \frac{\|\overrightarrow{PQ} \times \mathbf{v}\|}{\|\mathbf{v}\|}$.
- 8. Cylindrical to rectangular: $x = r \cos \theta$, $y = r \sin \theta$, z = z
- 9. Rectangular to cylindrical: $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$, z = z
- 10. Spherical to rectangular: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$
- 11. Rectangular to spherical: $\rho^2 = x^2 + y^2 + z^2$, $\tan \theta = \frac{y}{x}$, $\phi = \cos^{-1} \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)$
- 12. Spherical to cylindrical: $r^2 = \rho^2 \sin^2 \phi$, $\theta = \theta$, $z = \rho \cos \phi$
- 13. Cylindrical to spherical: $\rho = \sqrt{r^2 + z^2}$, $\theta = \theta$, $\phi = \cos^{-1} \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)$
- 14. The unit tangent vector: $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}$
- 15. The **principal unit normal vector**: $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$
- 16. $\mathbf{a}(t) = a_{\mathbf{T}} \mathbf{T}(t) + a_{\mathbf{N}} \mathbf{N}(t)$, where $a_{\mathbf{T}} = \frac{d}{dt} \| \mathbf{v}(t) \|$ and $a_{\mathbf{N}} = \| \mathbf{v} \| \| \mathbf{T}'(t) \|$
- 17. $a_{\mathbf{T}} = \mathbf{a} \bullet \mathbf{T}$
- 18. $a_{\mathbf{N}} = \mathbf{a} \bullet \mathbf{N} = \sqrt{\|\mathbf{a}\|^2 a_{\mathbf{T}}^2}$
- 19. Arc length formula: $s = \int_{a}^{b} ||\mathbf{r}'(t)|| dt$
- 20. Arc length function: $s(t) = \int_{a}^{t} ||\mathbf{r}'(u)|| du$
- 21. **Curvature**: $K = \|\mathbf{T}'(s)\| = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$ (incidentally, $K = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|r'(t)\|^3}$ is also a handy formula for calculating K).

22.
$$f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \text{ and } f_y(x, y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

- 23. The total differential: $dz = f_x(x, y)dx + f_y(x, y)dy$
- 24. Suppose that in the equation F(x, y) = 0, y is defined implicitly as a differentiable function of x. If F is differentiable, then $\frac{dy}{dx} = -\frac{F_x(x, y)}{F_y(x, y)}$.
- 25. If the equation F(x, y, z) = 0 defines z implicitly as a differentiable function

of x and y, then
$$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}$.

- 26. The directional derivative: $D_{\mu}f(x,y) = f_{x}(x,y)\cos\theta + f_{y}(x,y)\sin\theta$.
- 27. The gradient: $\nabla f(x, y) = f_x(x, y) \mathbf{i} + f_y(x, y) \mathbf{j}$
- 28. Tangent plane: $f_x(x_0, y_0, z_0)(x x_0) + f_y(x_0, y_0, z_0)(y y_0) + f_z(x_0, y_0, z_0)(z z_0) = 0$
- 29. Angle of inclination: $\cos \theta = \frac{|\mathbf{n} \cdot \mathbf{k}|}{\|\mathbf{n}\|}$
- 30. The Second Derivative Test: Suppose the second partials of f are continuous on an open region containing (a,b) and $\nabla f(x,y) = \mathbf{0}$ (i.e. (a,b) is a critical point). Let
 - $d = f_{xx}(a,b)f_{yy}(a,b) [f_{xy}(a,b)]^2$
 - a) If d > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a relative minimum.
 - b) If d > 0 and $f_{yy}(a,b) < 0$, then f(a,b) is a relative maximum.
 - c) If d < 0, then f(a,b) is neither a relative minimum nor a relative maximum.
 - d) The test is inconclusive if d = 0.