Math 205 Sample Multiple Choice Test Chamberlin

Multiple Choice. Circle the letter that corresponds to the single most appropriate answer. You <u>do not</u> need to show work on this portion of the test. (1 point each).

Name ____

- 1. The letters A, B, C, and D are the vertices of the below rectangle. In the rectangle, which of the following represents $\overrightarrow{BA} \overrightarrow{CA}$?
 - a) \overrightarrow{AC} b) \overrightarrow{DB} c) \overrightarrow{AD} d) \overrightarrow{BC}
 - e) \overrightarrow{CB}
- 2. Suppose $\mathbf{u} \cdot \mathbf{v} > 0$. Which of the following must be true about the smaller angle, θ , between \mathbf{u} and \mathbf{v} ?
 - a) $\frac{\pi}{2} < \theta < \pi$ b) $0 < \theta < \frac{\pi}{2}$ c) $\theta = 0$ d) $\theta = \frac{\pi}{2}$
 - e) $\theta = \pi$
- 3. Find a vector orthogonal to the two given lines.

line 1:	x = -1 + 3t ,	y=3-2t,	z = 1 + t
line 2:	x = 4 + 5t ,	y=2-t,	z = -1 - 2t
a) $5i - 3j + 14k$	b) -5 i -11 j -7 k	c) $4i - 11j + 7k$	d) $-5i + 3j + 10k$
e) none of these			

- 4. What can you conclude about the speed of an object if the angle between the velocity and acceleration vectors is acute?
 - a) The speed is increasing.
 - b) Not enough information is given to draw any conclusions.
 - c) The speed is constant.
 - d) The speed is decreasing.
- 5. For which of the below points on the curve (A, B, C, or D) is the curvature, K, the largest?

a) point A

b) point B

c) point C

d) point D

6. Circle the letter corresponding to the most appropriate answer:

The domain of the function given by $f(x, y) = \ln(4 - x - y)$ is which of the following?

- c) $\{(x, y): x + y < 4\}$ d) $(-\infty, \infty)$ All real numbers b) $[0,\infty)$ a)
- $\{(x, y): x \text{ and } y \text{ are real numbers}\}\$ e)
- 7. Circle the letter corresponding to the most appropriate answer:

Assuming function values of f are positive, the level curves for the function $f(x, y) = 3x^2 + y^2$ is a family of

- a) paraboloids b) cones c) circles d) right triangles spheres f) ellipses g) parabolas h) hyperbolas e)
- 8. Let z = f(x, y) and let increments of x and y be given by $\Delta x = dx$ and $\Delta y = dy$. Suppose the total differential, dz, is evaluated at (x_0, y_0) . What does dz represent geometrically in relation to the points (x_0, y_0) and $(x_0 + \Delta x, y_0 + \Delta y)$?
 - a) The change in height of the tangent plane to the function when (x, y) changes from (x_0, y_0) to $(x_0 + \Delta x, y_0 + \Delta y)$.
 - b) The change in height of the function f when (x, y) from (x_0, y_0) to $(x_0 + \Delta x, y_0 + \Delta y)$
 - c) The direction of maximum increase of z = f(x, y).
 - d) The direction of maximum decrease of z = f(x, y).
- 9. The point on the surface to the right is $(1, 0, e^{-1})$. Which of the following is most likely to point in the same direction as the gradient vector evaluated at (1,0)?

a) $\langle -1,0\rangle$

- b) $\langle 1,0 \rangle$ f) $\langle 0,e^{-1} \rangle$ g) $\langle 0, 0, e^{-1} \rangle$ h) $\langle e^{-1}, e^{-1}, e^{-1} \rangle$ e) $\langle e^{-1}, 0 \rangle$
- 10. In which of the following situations is a two-variable function z = f(x, y) guaranteed to have both an absolute maximum and absolute minimum?
 - a) The function is differentiable on a closed-bounded region, R.
 - b) The function is continuous on the entire xy-plane.
 - c) The function is differentiable and has at least two critical values.
 - d) The function is continuous on a bounded region, R.
 - e) The function has continuous first partial derivatives on a region, R.

11. Evaluate the double integral $\iint 3dA$ given that the area of the region *R* is 20 square units.

- a) 20 b) 60 c) 40 d) $\frac{20}{3}$ e) 120 f) 3 f) 10
- 12. In the first problem, suppose the region *R* represents a planar lamina with constant density function $\rho = 3$. Then what does $\iint 3dA$ represent physically?
 - a) The density of the planar lamina.
 - b) The volume of the planar lamina.
 - c) The moment of mass with respect to the z-axis.
 - d) The mass of the planar lamina.

13. The triple integral $\int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{r} r dz dr d\theta$ gives the volume under which of the following surfaces? (**note**:

each surface has a height of 1)

- 14. Recall that $x = r \cos \theta$ and $y = r \sin \theta$ is a transformation that maps points in $r\theta$ -land to points in *xy*-land. Which of the following is the value of the jacobian when converting an integral to polar coordinates?
 - a) r b) 1 c) $\rho^2 \sin \phi$ d) θ
- 15. What surface is represented in spherical coordinates by the equation $\phi = c$, where *c* is a constant between 0 and $\pi/2$.
 - a) A sphere of radius c.
 - b) A half-plane containing the z-axis
 - c) The top half of a hemisphere of radius *c*.
 - d) The bottom half of a hemisphere of radius *c*.
 - e) A cylinder of radius *c*.
 - f) The top half of a cone.

16. The figure shows a vector field **F** and two curves C_1 and C_2 .

Which of the following best describes the line integral **F** over C_1 ?

- a) The line integral of **F** over C_1 is probably positive.
- b) The line integral of **F** over C_1 is 0, which means **F** is conservative.
- c) The line integral of **F** over C_1 is 0.
- d) The line integral of **F** over C_1 is probably negative.