Homework Section 12.3

- 1. Use the below picture to write the following as single vectors:
 - a) $\overrightarrow{AB} + \overrightarrow{BC}$ b) $\overrightarrow{CD} + \overrightarrow{DA}$ c) $\overrightarrow{AB} \overrightarrow{BC}$ $A = \begin{bmatrix} A \\ B \end{bmatrix} \begin{bmatrix} D \\ C \end{bmatrix}$
- 2. Consider the following vectors given in the picture below.

Draw the following.

a)	$\mathbf{u} + \mathbf{v}$	b)	$\mathbf{u} - \mathbf{v}$
c)	2u	d)	$2\mathbf{u} + \mathbf{v}$
e)	-2 u	f)	-2u + v

- 3. Consider the planar points P(2, 4), Q(-1, 5):
 - a) Graph the vector \overrightarrow{PQ} .
 - b) Convert \overrightarrow{PQ} to component form and include this vector on the graph from part (a).
- 4. Repeat number three for the points P(1, 2, 4) and Q(3, 5, 6) in R^3 .

5. Let $\mathbf{u} = \langle -2, 5, -7 \rangle$ and $\mathbf{v} = \langle 2, -3, -6 \rangle$.

- a) Find $\mathbf{u} + \mathbf{v}$, $\mathbf{u} \mathbf{v}$, $-2\mathbf{v}$, $5\mathbf{u} 2\mathbf{v}$, $|\mathbf{u}|$, and $|\mathbf{v}|$
- b) Find the unit vector that has the same direction as **u**.
- c) Find the unit vector that has the same direction as **v**
- d) Find a vector of length 5 with the same direction as **v**.

- 6. Let $\mathbf{u} = -\mathbf{i} 5\mathbf{j} + 7\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 4\mathbf{j} 3\mathbf{k}$. Find $\mathbf{u} + \mathbf{v}$, $\mathbf{u} \mathbf{v}$, $-2\mathbf{v}$, $5\mathbf{u} 2\mathbf{v}$ and $|\mathbf{u}|$.
- 7. A plane flies at a constant groundspeed of 400 mph due east and encounters a 50 mph wind from the northwest. Find the airspeed and compass direction that will allow the plane to maintain its ground speed and eastward direction.
- 8. The picture below represents the application of two forces, **u** and **v**, on an object located at point A. If **u** and **v** have magnitudes 12 pounds and 8 pounds, respectively, determine the resultant force, $\mathbf{u} + \mathbf{v}$, along with the magnitude and direction of $\mathbf{u} + \mathbf{v}$.

- 9. A **matrix** is a rectangular array of numbers. We add, subtract, and scalar multiply matrices in the same way we do vectors. Perform the indicated operations on the following matrices:
 - a) $\begin{bmatrix} 2 & -3 & 8 \\ -5 & 1 & 0 \end{bmatrix} + \begin{bmatrix} -4 & 3 & 2 \\ 4 & 7 & 9 \end{bmatrix}$ b) $\begin{bmatrix} 2 & -3 & 8 \\ -5 & 1 & 0 \end{bmatrix} \begin{bmatrix} -4 & 3 & 2 \\ 4 & 7 & 9 \end{bmatrix}$ c) $3\begin{bmatrix} 2 & -3 & 8 \\ -5 & 1 & 0 \end{bmatrix}$
- 10. We usually define matrices using capital letters. Operations are performed in the usual order. Let $A = \begin{bmatrix} 2 & -3 & 8 \\ -5 & 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 3 & 2 \\ 4 & 7 & 9 \end{bmatrix}$. Compute 3A - 2B.
- 11. In a matrix, **rows** run horizontally and **columns** run vertically. The order (or dimension) of a matrix is given by the number rows by the number of columns. For example, matrix *A* from the $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$

previous problem has order 2×3. What is the order of the matrix $C = \begin{bmatrix} 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$?