Homework Section 12.4

1. Let $\mathbf{u}=\langle-2,5,-7\rangle$ and $\mathbf{v}=\langle 2,-3,-6\rangle$. Find the dot product, $\mathbf{u} \cdot \mathbf{v}$.
2. Repeat number 1 for $\mathbf{u}=-\mathbf{i}-5 \mathbf{j}+7 \mathbf{k}$ and $\mathbf{v}=6 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}$.
3. Find $\mathbf{u} \cdot \mathbf{v}$, given $|\mathbf{u}|=5,|\mathbf{v}|=11$ and the angle between \mathbf{u} and \mathbf{v} is $\pi / 3$.
4. Find the angle between $\mathbf{u}=\langle-2,5,-7\rangle$ and $\mathbf{v}=\langle 2,-3,-6\rangle$. Give an exact expression and also an approximation to the nearest tenth of a degree.
5. Repeat number 4 for the vectors $\mathbf{u}=-\mathbf{i}-5 \mathbf{j}+7 \mathbf{k}$ and $\mathbf{v}=6 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}$.
6. Decide if the given pairs of vectors are parallel, orthogonal or neither.
a) $\quad \mathbf{u}=\langle-2,5,2\rangle, \mathbf{v}=\langle 0,-4,10\rangle$
b) $\mathbf{u}=-\mathbf{i}-5 \mathbf{j}+7 \mathbf{k}$ and $\mathbf{v}=6 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}$
c) $\quad \mathbf{u}=-3 \mathbf{i}-2 \mathbf{j}+\frac{3}{2} \mathbf{k}$ and $\mathbf{v}=6 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}$
7. Find the values of x that make the vectors $\langle 2, x, x\rangle$ and $\langle x, x,-3\rangle$ orthogonal.
8. Find the vector projection of \mathbf{u} onto \mathbf{v} :
a) $\mathbf{u}=-\mathbf{i}+2 \mathbf{j}-\mathbf{k}, \mathbf{v}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}$
b) $\quad \mathbf{u}=\langle-2,5,-7\rangle$ and $\mathbf{v}=\langle 2,-3,-6\rangle$.
9. Find the work done in moving a particle from $P(3,-1,0)$ to $Q(2,3,1)$ if the magnitude and direction of the force is given by $\mathbf{F}=\langle 5,6,-2\rangle$. Assume the magnitude of the force is in pounds and the magnitude of $\overrightarrow{P Q}$ is in feet (Hint: find the distance vector, $\overrightarrow{P Q}$, in component form first).
10. If $\|\mathbf{F}\|$ is $40 \mathrm{~N},\|\overrightarrow{P Q}\|=3 \mathrm{~m}$, and $\theta=60^{\circ}$, find the work done by \mathbf{F} in acting from P to Q
11. The element in the ith row and jth column of a matrix A is denoted $a_{i j}$. Let $A=\left[\begin{array}{ccc}2 & -3 & 8 \\ -5 & 1 & 0\end{array}\right]$. Which entry is a_{13} ? Which entry is a_{22} ?
12. The determinant of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is given by $\operatorname{det}(A)=a d-b c$.

Let $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & -3 \\ 4 & 5\end{array}\right]$.
a) Find $\operatorname{det}(A)$
b) Find $\operatorname{det}(B)$
13. Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. To any entry, $a_{i j}$, in the matrix, there corresponds a 2×2 sub-matrix obtained by deleting the ith row and jth column of A. The following table gives the submatrices for entries in the first row of A :

Entry	Corresponding Sub-matrix
a_{11}	$\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]$
a_{12}	$\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]$
a_{13}	$\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

The determinant of a 3×3 matrix can be defined using the above sub-matrices as in the following formula:

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
$$

Find the following determinants using the above formula:
a) $\left[\begin{array}{ccc}-1 & 5 & 2 \\ 0 & 2 & 4 \\ 3 & -5 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}2 & 1 & 0 \\ -4 & 3 & 8 \\ -3 & 1 & 1\end{array}\right]$

