Homework Section 12.4

- 1. Let $\mathbf{u} = \langle -2, 5, -7 \rangle$ and $\mathbf{v} = \langle 2, -3, -6 \rangle$. Find the dot product, $\mathbf{u} \cdot \mathbf{v}$.
- 2. Repeat number 1 for $\mathbf{u} = -\mathbf{i} 5\mathbf{j} + 7\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 4\mathbf{j} 3\mathbf{k}$.
- 3. Find $\mathbf{u} \cdot \mathbf{v}$, given $|\mathbf{u}| = 5$, $|\mathbf{v}| = 11$ and the angle between \mathbf{u} and \mathbf{v} is $\pi/3$.
- 4. Find the angle between $\mathbf{u} = \langle -2, 5, -7 \rangle$ and $\mathbf{v} = \langle 2, -3, -6 \rangle$. Give an exact expression and also an approximation to the nearest tenth of a degree.
- 5. Repeat number 4 for the vectors $\mathbf{u} = -\mathbf{i} 5\mathbf{j} + 7\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 4\mathbf{j} 3\mathbf{k}$.
- 6. Decide if the given pairs of vectors are parallel, orthogonal or neither.

a)
$$\mathbf{u} = \langle -2, 5, 2 \rangle$$
, $\mathbf{v} = \langle 0, -4, 10 \rangle$ b) $\mathbf{u} = -\mathbf{i} - 5\mathbf{j} + 7\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$

c)
$$\mathbf{u} = -3\mathbf{i} - 2\mathbf{j} + \frac{3}{2}\mathbf{k}$$
 and $\mathbf{v} = 6\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$

- 7. Find the values of x that make the vectors $\langle 2, x, x \rangle$ and $\langle x, x, -3 \rangle$ orthogonal.
- 8. Find the vector projection of **u** onto **v**:

a)
$$u = -i + 2j - k$$
, $v = 2i + j + k$

b)
$$\mathbf{u} = \langle -2, 5, -7 \rangle$$
 and $\mathbf{v} = \langle 2, -3, -6 \rangle$.

- 9. Find the work done in moving a particle from P(3,-1,0) to Q(2,3,1) if the magnitude and direction of the force is given by $\mathbf{F} = \langle 5, 6, -2 \rangle$. Assume the magnitude of the force is in pounds and the magnitude of \overrightarrow{PQ} is in feet (**Hint**: find the distance vector, \overrightarrow{PQ} , in component form first).
- 10. If $\|\mathbf{F}\|$ is 40 N, $\|\overline{PQ}\| = 3$ m, and $\theta = 60^{\circ}$, find the work done by **F** in acting from *P* to *Q*
- 11. The element in the ith row and jth column of a matrix A is denoted a_{ij} . Let $A = \begin{bmatrix} 2 & -3 & 8 \\ -5 & 1 & 0 \end{bmatrix}$. Which entry is a_{13} ? Which entry is a_{22} ?

12. The **determinant** of a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is given by $\boxed{\det(A) = ad - bc}$.

Let
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & -3 \\ 4 & 5 \end{bmatrix}$.
a) Find det(A) b) Find det(B)

13. Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. To any entry, a_{ij} , in the matrix, there corresponds a 2×2 sub-matrix

obtained by deleting the ith row and jth column of A. The following table gives the submatrices for entries in the first row of A:

Entry	Corresponding Sub-matrix
	$\begin{bmatrix} a_{22} & a_{23} \end{bmatrix}$
a_{11}	$\begin{bmatrix} a_{32} & a_{33} \end{bmatrix}$
	$\begin{bmatrix} a_{21} & a_{23} \end{bmatrix}$
a_{12}	$\begin{bmatrix} a_{31} & a_{33} \end{bmatrix}$
	$\begin{bmatrix} a_{21} & a_{22} \end{bmatrix}$
a_{13}	$\begin{bmatrix} a_{31} & a_{32} \end{bmatrix}$

The **determinant** of a 3×3 matrix can be defined using the above sub-matrices as in the following formula:

$$\det(A) = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Find the following determinants using the above formula:

a)
$$\begin{bmatrix} -1 & 5 & 2 \\ 0 & 2 & 4 \\ 3 & -5 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 2 & 1 & 0 \\ -4 & 3 & 8 \\ -3 & 1 & 1 \end{bmatrix}$