Homework Section 12.6

1. Find parametric equations of the line:
a) Through the point $(2,0,-5)$ and parallel to $\mathbf{v}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
b) Through the point $(-1,3,2)$ and parallel to the line $x=1+2 t, y=3 t$ and $z=4-3 t$.
2. a) Find a vector equation for the line in 1(a).
b) Find the symmetric equations of the line from 1(b).
3. Find the points where the line $x=1+2 t, y=3 t$, and $z=4-3 t$ intersects the yz-plane.
4. Decide if each pair of lines are intersecting, skew, or parallel. If there is an intersection point, find it.
a) Line 1: $\quad x=1+2 t, y=4+3 t$ and $z=4-5 t$

Line 2: $\quad x=2-8 s, y=-12 s$ and $z=-11+20 s$
b) Line 1: $\quad x=2+2 t, y=4+t$ and $z=4-5 t$

Line 2: $\quad x=-8 s, y=-1-3 s$ and $z=4+s$
c) Line 1: $\quad x=2+2 t, y=4+t$ and $z=11-t$

Line 2: $\quad x=-8 s, y=-1-3 s$ and $z=7 s$
5. Find an equation of the plane:
a) passing through $(-4,1,3)$ and perpendicular to the vector $\mathbf{v}=\langle 2,-7,3\rangle$.
b) passing through $(-4,1,3)$ and perpendicular to the line $x=1+2 t, y=3 t$ and $z=4-3 t$.
c) passing through the points $(-4,1,3)$, ($5,-1,-3$) , and $(2,2,-6)$.
d) passing through $(-4,1,3)$ and containing the line $x=1+2 t, y=3 t$ and $z=4-3 t$.
6. Determine the point of intersection of the line $x=2+2 t, y=4+t$ and $z=4-5 t$ and the plane $x+2 y-3 z=36$.
7. Find a set of parametric equations of the line of intersection of the planes $x-y+z=1$ and $2 x+y+z=0$.
8. Decide if the planes below are perpendicular or parallel to the plane $2 x-9 y+z=4$.
a) $-6 x+27 y-3 z=9$
b) $-3 x-y-3 z=-12$
9. Find the angle between the planes $x-y+z=1$ and $2 x+y+z=0$. Round your answer to the nearest hundredth of a degree.
10. Find the distance between the parallel planes $2 x-9 y+z=4$ and $2 x-9 y+z=10$

