Homework Section 13.3

1. Find the exact value of the length of the curve given by $\mathbf{r}(t)=2 t \mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}$, $-2 \leq t \leq 8$.
2. Set up the integral that gives the length of the following curve and then approximate that length, accurate to the nearest thousandth, using a calculator: $\mathbf{r}(t)=2 t \mathbf{i}+e^{t} \mathbf{j}-3 t^{2} \mathbf{k},-5 \leq t \leq 6$.
3. Find the arc length function (starting from the point corresponding to $t=0$) and use it to reparameterize $\mathbf{r}(t)$ in terms of arc length.
a) $\mathbf{r}(t)=5 t \mathbf{i}+\cos t \mathbf{j}+\sin t \mathbf{k}$
b) $\mathbf{r}(t)=\langle 3 t, 1+2 t, 4-t\rangle$
4. Find the unit tangent and unit normal vectors (the unit normal vector is defined as $\left.\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}\right)$:
a) $\mathbf{r}(t)=2 t \mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}$
b) $\mathbf{r}(t)=e^{-t} \mathbf{i}+e^{t} \mathbf{j}-\sqrt{2} t \mathbf{k}$
5. Find the curvature:
a) $\mathbf{r}(t)=2 t \mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}$
b) $\mathbf{r}(t)=e^{-t} \mathbf{i}+e^{t} \mathbf{j}-\sqrt{2} t \mathbf{k}$
6. Find the curvature: $\mathbf{r}(t)=2 t \mathbf{i}+\left(1-t^{2}\right) \mathbf{j}-3 t \mathbf{k}$.
7. Find the curvature of $\mathbf{r}(t)=2 \mathbf{t i}+\left(1-t^{2}\right) \mathbf{j}-3 t \mathbf{k}$ at the point $(2,0,-3)$.
8. Find the curvature of $y=8 x^{4}-x$.
9. a) Where does the below curve have greater curvature, point A or point B ? Justify your answer.
b) Sketch the Circle of Curvature at point A and use its radius to approximate the curvature of the given curve at point A. Use millimeters as your units.

