Homework Section 13.4

1. The picture below shows the path of an object. The object's location is given by the position vector function $\mathbf{r}(t)$, where t is time.
a) Sketch the average velocity vector from time $t=1$ to $t=1.5$.
b) Sketch the average velocity vector from time $t=1.5$ to $t=1.9$.
c) Write an expression for the velocity vector $\mathbf{v}(1.5)$.
d) Draw an approximation to the vector $\mathbf{v}(1.5)$ and estimate the speed of the particle at $t=1.5$.

2. Let $\mathbf{r}(t)=2 t \mathbf{i}+\left(1-t^{2}\right) \mathbf{j}$
a) Calculate the velocity, acceleration, and speed of an object with position function $\mathbf{r}(t)$.
b) Sketch the object's path and draw the velocity and acceleration vectors for $t=2$. Place the initial points of $\mathbf{v}(2)$ and $\mathbf{a}(2)$ on $\mathbf{r}(2)$
3. Calculate the velocity, acceleration, and speed of an object with the given position function.
a) $\mathbf{r}(t)=\left\langle 3 t^{2}, 1+2 t, 4-t^{3}\right\rangle$
b) $\mathbf{r}(t)=2 t \mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}$
4. Find the velocity and position functions corresponding to the acceleration function $\mathbf{a}(t)=\mathbf{j}$ with initial conditions $\mathbf{v}(0)=\mathbf{i}+\mathbf{k}$ and $\mathbf{r}(0)=\mathbf{j}-\mathbf{k}$.
5. Find out when a particle reaches a minimum speed if its path is given by $\mathbf{r}(t)=\left\langle 3 t^{2}, 2 t, 4 t^{2}-t\right\rangle$ where t is in seconds and distance is measured in centimeters.
6. A projectile is fired with an initial speed of 400 meters per second and angle of elevation 60°.
a) Find the range of the projectile.
b) Find the maximum height of the projectile.
c) Find the speed of the projectile upon impact.
7. A ball is thrown at an angle of 45° to the ground. If the ball lands 70 meters away, what was the initial speed of the ball?
8. A rifle has a muzzle velocity of 200 meters per second. Find two angles of elevation that can be used to hit a target 900 meters away.
9. Find the tangential and normal components of acceleration (use your work from number 4 on 13.3):
a) $\mathbf{r}(t)=2 t \mathbf{i}+\cos t \mathbf{j}-\sin t \mathbf{k}$
b) $\mathbf{r}(t)=e^{-t} \mathbf{i}+e^{t} \mathbf{j}-\sqrt{2} t \mathbf{k}$
10. Consider the position function $\mathbf{r}(t)=2 t \mathbf{i}+t^{3} \mathbf{j}$. Do the following sketches on the same plane.
a) Sketch the curve given by $\mathbf{r}(t)$.
b) Sketch the acceleration vector at $t=1$ (make sure its initial point is at $\mathbf{r}(1)$).
c) Sketch the vectors $a_{T} \mathbf{T}(1)$ and $a_{N} \mathbf{N}(1)$ (make sure the initial points are at r(1)).
11. Find the unit tangent, principal unit normal, and binormal vectors of
$\mathbf{r}(t)=\frac{1}{3} t^{3} \mathbf{i}-\frac{\sqrt{2}}{2} t^{2} \mathbf{j}-t \mathbf{k}$ at the point given by $t=1$.
(Note: The unit binormal vector is defined as the cross product of vectors T and N, TxN.
Also, Remember that the principal unit normal vector is given by $\mathrm{N}=\mathrm{T}^{\prime} /| | \mathrm{T}^{\prime} \|$. .)
