Homework Section 15.1

- 1. a) Approximate the volume of the solid region under the surface $z = xy^2$ and above the rectangle $R = \{(x, y) | 0 \le x \le 6, 0 \le y \le 4\}$. Use a Riemann sum with m = 3, n = 2, and use the upper right corner of each sub-rectangle as sample points.
 - b) Repeat part (a) using midpoints as your sample points.
- 2. a) Approximate the volume of the solid region under the surface $z = x^2 + 2y$ and above the rectangle $R = [1,3] \times [0,4]$. Use a Riemann sum with m = 2, n = 2, and use the lower right corner of each sub-rectangle as sample points.
 - b) Repeat part (a) using midpoints as your sample points.
- 3. A table of values is given for a function f(x, y) defined on $R = [2, 4] \times [0, 4]$.
 - a) Estimate $\iint_{n} f(x, y) dA$ using midpoints with m = n = 2.
 - b) Estimate the double integral with m = 2 and n = 4 by using the lower left corner of each sub-rectangle as sample points.

y y	0	1	2	3	4
x					
1	2	1	-2	-6	-5
1.5	3	1	-4	-7	-6
2	4	3	0	-5	-8
2.5	5	5	3	-1	-4
3	7	8	6	3	0
3.5	8	10	7	4	1

4. Evaluate the double integral by first identifying it as the volume of a solid. (Example)

a)
$$\iint_{R} 4 \, dA, \ R = \{(x, y) \mid -1 \le x \le 2, \ 1 \le y \le 5\}$$

b) $\iint_{R} (6-x) dA, \ R = \{(x, y) \mid 0 \le x \le 6, \ 0 \le y \le 3\}$

5. Rectangleopia is a small, rectangular country which measures 180 miles by 117 miles. The contour map below shows elevations in feet. Use midpoints with m = n = 2 to estimate the average elevation in Rectangleopia. (Example).

